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Convex functions

Let C ⊆ R
n be convex and compact

Let f : C → R be lower semicontinuous

Any convex function underestimating f is a convex

relaxation of f

The convex envelope conv f of f is the pointwise supremum
of all convex underestimators of f
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Definitions

x = (x1, . . . , xk) some decision variables

Assume finite variable bounds xL ≤ x ≤ xU

The function w(x) = x1x2 · · ·xk is a multilinear term

If k − 1 vars are fixed, w is a linear function of 1 var

Smallest nontrivial case: w(x) = x1x2 (bilinear term)
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Process synthesis in chemical engineering (e.g., Haverly’s
pooling problems [Haverly; ACM SIGMAP Bull., 1978])

Molecular Distance Geometry Problem (MDGP) [Liberti et

al.; ITOR, 2008 - JOGO, 2009 - ITOR, 2010 - JOGO, 2011

- OPTL, 2011]

Multilinear Least-Squares (MLLS) [Paatero; JCGS, 1999]
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Haverly’s pooling problem

Pool

Blend 1

Blend 2

DemandsOutputsInputs

x11

3% Sulphur

$ 6

x21

1% Sulphur

$ 16

x12

2% Sulphur

$ 10

y11

y12
y21

y22

≤ 2.5% Sulphur

$ 9
≤ 100

≤ 1.5% Sulphur

$ 15
≤ 200

Find oil routing minimizing costs and satisfying mass+sulphur balance, quantity and

quality demands
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Pool

Blend 1

Blend 2

DemandsOutputsInputs

x11

3% Sulphur

$ 6

x21

1% Sulphur

$ 16

x12

2% Sulphur

$ 10

y11

y12
y21

y22

≤ 2.5% Sulphur

$ 9
≤ 100

≤ 1.5% Sulphur

$ 15
≤ 200

Find oil routing minimizing costs and satisfying mass+sulphur balance, quantity and

quality demands

Decision variables: input quantities x, routed quantities y, percentage p of sulphur in

pool
Sulphur balance: 3x11 + x21 = p(y11 + y12)

Quality demands (blend 1): py11 + 2y21 ≤ 2.5(y11 + y21)
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Find atomic positions xi ∈ R
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Continuous quartic formulation:

min
x

∑

{i,j}∈E

(||xi − xj ||2 − d2ij)
2

involves quadrilinear terms
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Multilinear Least Squares

Decision variables x1, . . . , xn

Sampled data d1, . . . , dm

Theoretical model:

∀i ≤ m di =
∑

ℓ∈Li





∏

j∈Jℓ

xj





where Lℓ ⊆ {1, . . . , n} for all ℓ

Minimize error Qp = ‖d− (
∑

ℓ∈Li

∏

j∈Jℓ
xj | i ≤ m)‖p, where

p ∈ N ∪ {∞}

With 1 or ∞ norms, get multilinear terms
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Primal relaxation

For the general case, convex envelopes for multilinear terms
are available explicitly in function of xL, xU for k = 2, 3 and
partly k = 4

They consist of sets of constraints to be adjoined to the
Mathematical Programming formulation

No further variables are needed

Alberto Costa1, Leo Liberti1 Relaxations of multilinear convex envelopes: dual is better than p



Outline
Introduction
Relaxations

Results
Conclusions

Primal relaxation
Dual relaxation

Bilinear terms: McCormick’s inequalities

Let W = {(w, x1, x2) | w = x1x2 ∧ (x1, x2) = [xL, xU ]},
then conv(W ) is given by:

w ≥ xL1 x2 + xL2 x1 − xL1 x
L
2

w ≥ xU1 x2 + xU2 x1 − xU1 x
U
2

w ≤ xL1 x2 + xU2 x1 − xL1 x
U
2

w ≤ xU1 x2 + xL2 x1 − xU1 x
L
2

Stated [McCormick; MP, 1976], proved [Al-Khayyal, Falk;

MOR, 1983]
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Special case: Fortet’s linearization

If x1 and x2 are binary variables, the McCormick’s inequalities lead
to the Fortet’s inequalities [Fortet; RFRO, 1960]:

w ≥ 0

w ≥ x2 + x1 − 1

w ≤ x1

w ≤ x2

The resulting reformulation is an exact linearization as shown in
[Liberti; RAIRO-RO, 2009]
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the number of constraints is greater than 4

there are several cases, depending on sign of bounds of the
variables: xLi x

U
i ≥ 0 [Meyer, Floudas; 2003]; mixed case

[Meyer, Floudas; JOGO, 2004]
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Trilinear case

It is not as easy as bilinear convex relaxation:

the number of constraints is greater than 4

there are several cases, depending on sign of bounds of the
variables: xLi x

U
i ≥ 0 [Meyer, Floudas; 2003]; mixed case

[Meyer, Floudas; JOGO, 2004]

there are further conditions to check
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U
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Permute variables x1, x2 and x3 such that:

xU
1 xL

2 x
L
3 + xL

1 x
U
2 xU

3 ≤ xL
1 x

U
2 xL

3 + xU
1 xL

2 x
U
3

xU
1 xL

2 x
L
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1 x
U
2 xU
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1 xU

2 xL
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1 x
L
2 x

U
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Lower envelope:
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2 x

L
3 x1 + xL

1 x
L
3 x2 + xL

1 x
L
2 x3 − 2xL

1 x
L
2 x

L
3
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3 x1 + xU
1 xU

3 x2 + xU
1 xU

2 x3 − 2xU
1 xU

2 xU
3

w ≥ xL
2 x

U
3 x1 + xL

1 x
U
3 x2 + xU

1 xL
2 x3 − xL

1 x
L
2 x

U
3 − xU

1 xL
2 x

U
3

w ≥ xU
2 xL

3 x1 + xU
1 xL

3 x2 + xL
1 x

U
2 x3 − xU

1 xU
2 xL

3 − xL
1 x

U
2 xL

3

w ≥ c1x1 + xU
1 xL

3 x2 + xU
1 xL

2 x3 + xL
1 x

U
2 xU

3 − c1x
L
1 − xU

1 xU
2 xL

3 − xU
1 xL

2 x
U
3

w ≥ c2x1 + xL
1 x

U
3 x2 + xL

1 x
U
2 x3 + xU

1 xL
2 x

L
3 − c2x

U
1 − xL

1 x
L
2 x

U
3 − xL

1 x
U
2 xL

3 ,

where c1 =
xU

1
xU

2
xL

3
−xL

1
xU

2
xU

3
−xU

1
xL

2
xL

3
+xU

1
xL

2
xU

3

xU
1
−xL

1

and

c2 =
xL

1
xL

2
xU

3
−xU

1
xL

2
xL

3
−xL

1
xU

2
xU

3
+xL

1
xU

2
xL

3

xL
1
−xU

1

Alberto Costa1, Leo Liberti1 Relaxations of multilinear convex envelopes: dual is better than p



Outline
Introduction
Relaxations

Results
Conclusions

Primal relaxation
Dual relaxation

Example (2): xU1 , x
U
2 , x

U
3 ≤ 0

Upper envelope:

w ≤ xL

2
xL

3
x1 + xU

1
xL

3
x2 + xU

1
xU

2
x3 − xU

1
xU

2
xL

3
− xU

1
xL

2
xL

3

w ≤ xU

2
xL

3
x1 + xL

1
xL

3
x2 + xU

1
xU

2
x3 − xU

1
xU

2
xL

3
− xL

1
xU

2
xL

3

w ≤ xL

2
xL

3
x1 + xU

1
xU

3
x2 + xU

1
xL

2
x3 − xU

1
xL

2
xU

3
− xU

1
xL

2
xL

3

w ≤ xU

2
xU

3
x1 + xL

1
xL

3
x2 + xL

1
xU

2
x3 − xL

1
xU

2
xU

3
− xL

1
xU

2
xL

3

w ≤ xL

2
xU

3
x1 + xU

1
xU

3
x2 + xL

1
xL

2
x3 − xU

1
xL

2
xU

3
− xL

1
xL

2
xU

3

w ≤ xU

2
xU

3
x1 + xL

1
xU

3
x2 + xL

1
xL

2
x3 − xL

1
xU

2
xU

3
− xL

1
xL

2
xU

3
.

Alberto Costa1, Leo Liberti1 Relaxations of multilinear convex envelopes: dual is better than p



Outline
Introduction
Relaxations

Results
Conclusions

Primal relaxation
Dual relaxation

Quadrilinear terms

The convex envelope is not known explicitly for quadrilinear terms

Combine bilinear and trilinear envelope [Cafieri, Lee,

Liberti; JOGO, 2011]

Convex envelope for some cases presented in [Balram; M.Sc.

Thesis, 2019] (e.g., when xL1 , x
L
2 , x

L
3 , x

L
4 ≥ 0, then 44

constraints are generated)

Alberto Costa1, Leo Liberti1 Relaxations of multilinear convex envelopes: dual is better than p



Outline
Introduction
Relaxations

Results
Conclusions

Primal relaxation
Dual relaxation

Tighter relaxations by associativity

Write w = x1x2x3x4 as:

1 (x1x2)x3x4 (tri(bi,1,1))

2 (x1x2x3)x4 (bi(tri,1))

3 (x1x2)(x3x4) (bi(bi(1,1),bi(1,1)))

4 ((x1x2)x3)x4 (bi(bi(bi(1,1),1),1))

Alberto Costa1, Leo Liberti1 Relaxations of multilinear convex envelopes: dual is better than p



Outline
Introduction
Relaxations

Results
Conclusions

Primal relaxation
Dual relaxation

Tighter relaxations by associativity

Write w = x1x2x3x4 as:

1 (x1x2)x3x4 (tri(bi,1,1))

2 (x1x2x3)x4 (bi(tri,1))

3 (x1x2)(x3x4) (bi(bi(1,1),bi(1,1)))

4 ((x1x2)x3)x4 (bi(bi(bi(1,1),1),1))

Apply bilinear/trilinear envelopes, get different relaxations for w:
which one is tightest?

Alberto Costa1, Leo Liberti1 Relaxations of multilinear convex envelopes: dual is better than p



Outline
Introduction
Relaxations

Results
Conclusions

Primal relaxation
Dual relaxation

Tighter relaxations by associativity

Write w = x1x2x3x4 as:

1 (x1x2)x3x4 (tri(bi,1,1))

2 (x1x2x3)x4 (bi(tri,1))

3 (x1x2)(x3x4) (bi(bi(1,1),bi(1,1)))

4 ((x1x2)x3)x4 (bi(bi(bi(1,1),1),1))

Apply bilinear/trilinear envelopes, get different relaxations for w:
which one is tightest?

Theorem

Choose smallest number of compositions ((1)-(2) are better than
(3)-(4))
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Tighter relaxations by associativity

Write w = x1x2x3x4 as:

1 (x1x2)x3x4 (tri(bi,1,1))

2 (x1x2x3)x4 (bi(tri,1))

3 (x1x2)(x3x4) (bi(bi(1,1),bi(1,1)))

4 ((x1x2)x3)x4 (bi(bi(bi(1,1),1),1))

Apply bilinear/trilinear envelopes, get different relaxations for w:
which one is tightest?

Theorem

Choose smallest number of compositions ((1)-(2) are better than
(3)-(4))

Some empirical indications on choosing (1) or (2) depending on
bounds
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Beyond quadrilinear terms

envelopes for multilinear terms larger than quadrilinear: not
known explicitly

software as PORTA can compute the convex hull of a given
set of points in R

n

Balram’s thesis reports a similar procedure to compute the
convex hull (but less refined)

Alberto Costa1, Leo Liberti1 Relaxations of multilinear convex envelopes: dual is better than p



Outline
Introduction
Relaxations

Results
Conclusions

Primal relaxation
Dual relaxation

Dual relaxation: preliminaries

Consider the 2k point set P :
{ (xL

1 , . . . , x
L
k−1, x

L
k ),

(xL
1 , . . . , x

L
k−1, x

U
k ),

(xL
1 , . . . , x

U
k−1, x

L
k ),

(xL
1 , . . . , x

U
k−1, x

U
k ),

. . . ,

(xU
1 , . . . , xU

k−1, x
L
k ),

(xU
1 , . . . , xU

k−1, x
U
k ) }

(i.e., all combinations of lower/upper bounds)

Let w(x) =
∏

i≤k xi: lift P to (x,w) space, get PW ⊆ R
k+1

∀x̄ ∈ P (x̄, w(x̄)) ∈ PW
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Dual representation of a point set

Convex hull of P = {p1, . . . , pm} ⊆ R
n is given by x ∈ R

n | :

∃λ ∈ R
m



x =
∑

i≤m

λipi ∧
∑

i≤m

λi = 1 ∧ ∀i ≤ m (λi ≥ 0)




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

x =
∑

i≤m

λipi ∧
∑

i≤m
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



⇔ x is a convex combination of points in P
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n | :

∃λ ∈ R
m



x =
∑

i≤m

λipi ∧
∑

i≤m

λi = 1 ∧ ∀i ≤ m (λi ≥ 0)





⇔ x is a convex combination of points in P

Can express points in PW in function of x,w, xL, xU and of
added (dual) variables λ for any k
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Dual representation of a point set

Convex hull of P = {p1, . . . , pm} ⊆ R
n is given by x ∈ R

n | :

∃λ ∈ R
m



x =
∑

i≤m

λipi ∧
∑

i≤m

λi = 1 ∧ ∀i ≤ m (λi ≥ 0)





⇔ x is a convex combination of points in P

Can express points in PW in function of x,w, xL, xU and of
added (dual) variables λ for any k

Automatically get explicit convex envelopes for multilinear

terms
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Dual envelopes of multilinear terms

We compute the i-th point pi ∈ P in O(2k) as follows:

∀i ≤ 2k di =

(⌊

i− 1

2k−j

⌋

mod 2 | j ≤ k

)

∀j ≤ k bj(0) = xL
j ∧ bj(1) = xU

j

i.e. for all i ≤ 2k, we have pi = (x
L/U?

j | j ≤ k) = (bj(dij) | j ≤ k)

Alberto Costa1, Leo Liberti1 Relaxations of multilinear convex envelopes: dual is better than p



Outline
Introduction
Relaxations

Results
Conclusions

Primal relaxation
Dual relaxation

Dual envelopes of multilinear terms

We compute the i-th point pi ∈ P in O(2k) as follows:

∀i ≤ 2k di =

(⌊

i− 1

2k−j

⌋

mod 2 | j ≤ k

)

∀j ≤ k bj(0) = xL
j ∧ bj(1) = xU

j

i.e. for all i ≤ 2k, we have pi = (x
L/U?

j | j ≤ k) = (bj(dij) | j ≤ k)

We add 2k new variables λ ≥ 0 and k + 1 new constraints:

∀j ≤ k xj =
∑

i≤2k

λibj(dij)

w =
∑

i≤2k

λi

∏

j≤k

bj(dij)

∑

i≤2k

λi = 1
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Dual envelopes of multilinear terms

We compute the i-th point pi ∈ P in O(2k) as follows:

∀i ≤ 2k di =

(⌊

i− 1

2k−j

⌋

mod 2 | j ≤ k

)

∀j ≤ k bj(0) = xL
j ∧ bj(1) = xU

j

i.e. for all i ≤ 2k, we have pi = (x
L/U?

j | j ≤ k) = (bj(dij) | j ≤ k)

We add 2k new variables λ ≥ 0 and k + 1 new constraints:

∀j ≤ k xj =
∑

i≤2k

λibj(dij)

w =
∑

i≤2k

λi

∏

j≤k

bj(dij)

∑

i≤2k

λi = 1

The projection of this feasible region on (x,w) is conv(W )
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Example: bilinear term

Using a matrix representation, we have:

[

λ1 λ2 λ3 λ4

]

·









xL
1 xL

2

xL
1 xU

2

xU
1 xL

2

xU
1 xU

2









=
[

x1 x2

]
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Example: bilinear term

Using a matrix representation, we have:

[

λ1 λ2 λ3 λ4

]

·









xL
1 xL

2

xL
1 xU

2

xU
1 xL

2

xU
1 xU

2









=
[

x1 x2

]

[

λ1 λ2 λ3 λ4

]

·









xL
1 x

L
2

xL
1 x

U
2

xU
1 xL

2

xU
1 xU

2









= w
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Example: bilinear term

Using a matrix representation, we have:

[

λ1 λ2 λ3 λ4

]

·









xL
1 xL

2

xL
1 xU

2

xU
1 xL

2

xU
1 xU

2









=
[

x1 x2

]

[

λ1 λ2 λ3 λ4

]

·









xL
1 x

L
2

xL
1 x

U
2

xU
1 xL

2

xU
1 xU

2









= w

x1 = λ1x
L
1 + λ2x

L
1 + λ3x

U
1 + λ4x

U
1

x2 = λ1x
L
2 + λ2x

U
2 + λ3x

L
2 + λ4x

U
2

w = λ1x
L
1 x

L
2 + λ2x

L
1 x

U
2 + λ3x

U
1 xL

2 + λ4x
U
1 xU

2
∑

i≤4

λi = 1
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Primal envelopes Dual envelopes

Original variables only 2k added variables
O(2k) added constraints k + 1 added constraints
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Comparison between relaxations

Primal envelopes Dual envelopes

Original variables only 2k added variables
O(2k) added constraints k + 1 added constraints

k Primal envelopes Dual envelopes

2 [McCormick] 4 4
3 [Meyer, Floudas] 12 8
4 [Balram] 44 16
5 [Balram] 130 32

Primal envelopes constraints: apparent growth like k2k
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Comparison between relaxations

Primal envelopes Dual envelopes

Original variables only 2k added variables
O(2k) added constraints k + 1 added constraints

k Primal envelopes Dual envelopes

2 [McCormick] 4 4
3 [Meyer, Floudas] 12 8
4 [Balram] 44 16
5 [Balram] 130 32

Primal envelopes constraints: apparent growth like k2k

O(k2k) vs. 2k might yield CPU improvements
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Experimental set-up

Generate random multilinear NLPs P

linear, bilinear, trilinear terms
nonseparable

Generate primal convex LP relaxation RP

Generate dual convex LP relaxation ΛP

Solve RP ,ΛP using CPLEX, compare CPU times

To “get a feel” about how RP ,ΛP might perform in BB, add integrality

constraints on primal variables, get MILP relaxations R′
P ,Λ′

P

Solve R′
P ,Λ

′
P using CPLEX, compare CPU times
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Instance set

2500 random instances

# variables n ∈ {10, 20}

n = 10:

# bilinear terms β ∈ {0, 10, 13, 17, 21, 25, 29, 33}
# trilinear terms τ ∈ {0, 10, 22, 34, 46, 58, 71, 83}

n = 20:

β ∈ {0, 20, 38, 57, 76, 95, 114, 133}
τ ∈ {0, 20, 144, 268, 393, 517, 642, 766}

16 instances for each parameter combination yielding
multilinear NLPs (and then MINLPs after imposing integrality
on some variables)

Variable bounds chosen at random, magnitude 1.0× 101
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LP relaxation test, n = 10

CPU time averages over each 16-instance block with given (n, β, τ)
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LP relaxation test, n = 20

CPU time averages over each 16-instance block with given (n, β, τ)
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MILP relaxation test, n = 10

CPU time averages over each 16-instance block with given (n, β, τ)
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MILP relaxation test, n = 20

CPU time averages over each 16-instance block with given (n, β, τ)
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Conclusion

Considerations

Dual relaxation outperforms the primal when the number of
variables increases
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Dual relaxation is better by far than primal for MILP
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Conclusion

Considerations

Dual relaxation outperforms the primal when the number of
variables increases

Dual relaxation is better by far than primal for MILP

Dual relaxation is more stable (empirically CPU time increases
proportionally to instance size) than primal for MILP

These are preliminary results

Using dual relaxation within spatial Branch-and-Bound could
improve computational times
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