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� Focus on (nonconvex) polynomial programming problems
� Aim to solve with sBB
� Need a tight convex (linear) relaxation at each node
� Reformulate before relaxing



Exact reformulations

Introduction

The setting

⊲
Exact
reformulations

Reformulation-
Linearization
Technique

RLT literature
review

Reduced RLT

RRLT literature
review

New developments

Why bother?

Thank you

Compact relaxations SEA 2012 – 4 / 40

P

Q

F

F
L

L

G
G

φ

φ|L

φ|G

� P harder than Q

� find optima in Q, map them back to P

� for each opt. in P ∃ corresponding opt. in Q
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Reformulation-Linearization Technique (RLT):
tightens the linear relaxation of mixed-integer (nonconvex)
QCQPs

min
x∈Rn1×Zn2

c0x+ xQ0x

∀1 ≤ i ≤ q cix+ xQix ≤ 0
∀1 ≤ i ≤ m aix ≤ bi

x ∈ [xL, xU ].
















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∀j, ℓ ≤ n = n1 + n2, i ≤ m, all factors non-negative ⇒
constraints are valid

(xj − xLj )(xℓ − xLℓ ) ≥ 0

(xj − xLj )(x
U
ℓ − xℓ) ≥ 0

(xUj − xj)(xℓ − xLℓ ) ≥ 0

(xUj − xj)(x
U
ℓ − xℓ) ≥ 0

(xj − xLj )(bi − aix) ≥ 0

(xUj − xj)(bi − aix) ≥ 0
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∀j, ℓ ≤ n, i ≤ m, get:

xjxℓ − xLℓ xj − xLj xℓ + xLj x
L
ℓ ≥ 0

−xjxℓ + xUℓ xj + xLj xℓ − xLj x
U
ℓ ≥ 0

−xjxℓ + xLℓ xj + xUj xℓ − xUj x
L
ℓ ≥ 0

xjxℓ − xUℓ xj − xUj xℓ + xUj x
U
ℓ ≥ 0

−xjaix+ xLj aix+ xjbi − xLj bi ≥ 0

xjaix− xUj aix− xjbi + xUj bi ≥ 0
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Replace xjxℓ by var. wjℓ (wj = (wj1, . . . , wjn)):

wjℓ ≥ xLℓ xj + xLj xℓ − xLj x
L
ℓ

wjℓ ≤ xUℓ xj + xLj xℓ − xLj x
U
ℓ

wjℓ ≤ xLℓ xj + xUj xℓ − xUj x
L
ℓ

wjℓ ≥ xUℓ xj + xUj xℓ − xUj x
U
ℓ















(McCormick’s con-
vex/concave envelopes
for xjxℓ)

0

1

2
x

–4 –2 0 2 4
y

–10

–5

0

5

10

aiwj ≤ xLj aix+ xjbi − xLj bi
aiwj ≥ xUj aix+ xjbi − xUj bi.

}

valid linear relations be-
tween x and w



Relaxation 1/2

Introduction

Reformulation-
Linearization
Technique

Aim

RLT constraints 1/2

RLT constraints 2/2

Linearization

⊲ Relaxation 1/2

Relaxation 2/2

RLT literature
review

Reduced RLT

RRLT literature
review

New developments

Why bother?

Thank you

Compact relaxations SEA 2012 – 10 / 40

� ∀i ≤ q, replace terms xixj in xQix with linearizing variables
wij

w =







w11 . . . w1n
...

. . .
...

wn1 . . . wnn







� Get xQix = Qiw
� Use IA on [xL, xU ] to compute ranges [wL,wU ] for w
� Adjoin commutativity constr. ∀j ≤ ℓ ≤ n wjℓ = wℓj

� Adjoin square constr. ∀i ≤ n s.t. xi is binary wii = xi
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Relaxed MILP

min c0x+Q0w
∀i ≤ q cix+Qiw ≤ 0
∀i ≤ m aix ≤ bi

(RLT+Commutativity+Square constraints)
x ∈ (Rn1 × Zn2) ∩ [xL, xU ]

w ∈ Rn2

∩ [wL,wU ]


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Seminal paper

Adams & Sherali, Mgt. Sci. 1986:

x ∈ {0, 1}n

MILP reformulation via Fortet’s
inequalities

wjℓ ≤ min(xj, xℓ)

wjℓ ≥ max(0, xj + xℓ − 1)

then continuous relaxation
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Adams & Sherali, Op. Res. 1990:

x ∈ Rn1 × {0, 1}n2 with products
involving at least one binary
variable

MILP reformulation

then continuous relaxation
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Sherali & Alameddine, JOGO
1992:

x ∈ Rn with bilinear products

LP relaxation

under special condition, LP is
reformulation
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Adams & Sherali,
Math. Prog. 1993:

x ∈ Rn1 × {0, 1}n2 specialized to
bilinear products involving one
continuous and one binary
variable

MILP reformulation

then continuous relaxation



Relaxation hierarchy

Introduction

Reformulation-
Linearization
Technique

RLT literature
review

The first paper

Mixed products

Relaxation of
bilinear terms
Mixed products
again

⊲
Relaxation
hierarchy

Etc.

Reduced RLT

RRLT literature
review

New developments

Why bother?

Thank you

Compact relaxations SEA 2012 – 17 / 40

Sherali & Adams, DAM 1994:

x ∈ Rn1 × {0, 1}n2

Convex hull of MILP feasible
region obtained through hierarchy
of RLT constraints

Level d RLT: let
J1, J2 ⊆ {1, . . . , n2} with
|J1 ∪ J2| = d and

Fd(J1, J2) =
∏

j∈J1

xj
∏

j∈J2

(1− xj);

multiply RLT-(d− 1) constraints
by all Fd(J1, J2) the linearize to
obtain RLT-d
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. . . and many more!

extensions (polynomial and signomial programming, SDP, convex
MINLP, disjunctive cuts) and applications
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Consider mixed-integer QCQP subject to linear equality
constraints Ax = b (A has full rank)

min
x∈Rn1×Zn2

c0x+ xQ0x

∀1 ≤ i ≤ q cix+ xQix ≤ 0
Ax = b
x ∈ X ∩ [xL, xU ].



















X is a polyhedron
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� Generate RLT constraints from Ax = b

Ax = b ⇒

∀ℓ ≤ n xℓAx = xℓb ⇒

∀ℓ ≤ n Awℓ = xℓb

� Consider homogeneous system ∀ℓ ≤ n (Awℓ = 0) and a set
N of nonbasic variable index pairs (j, ℓ); let:

C = {(x,w) | Ax = b ∧ ∀j, ℓ ≤ n (wjℓ = xjxℓ)}

RN = {(x,w) | Ax = b ∧

∀ℓ ≤ n (Awℓ = bxℓ) ∧ ∀(j, ℓ) ∈ N (wjℓ = xjxℓ)}
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Thm.
Let [n] = {1, . . . , n}; ∃N ⊆ [n]× [n] C = RN

Proof
(RRLT system) ∀ℓ ≤ n Awℓ − xℓb = 0 ⇒

(replace b by Ax) ∀ℓ ≤ n Awℓ − xℓAx = 0 ⇒

(z = wℓ − xℓx are vars. of hom. sys.) ∀ℓ ≤ n A(wℓ − xℓx) = 0.(1)





(1) is homogeneous
N ⊆ [n]× [n]: nonbasic of (1)
∀(j, ℓ) ∈ N wjℓ = xjxℓ



 ⇒















get square nonsing. subsyst.
A′z = 0 of (1)
corresponding to basic cols.
B = [n]× [n]rN

by basic linear algebra, A′z = 0 implies ∀(j, ℓ) ∈ B (wjℓ = xjxℓ).

Cor.
RRLT constraints ⇒ exact ref. with fewer quadratic terms

Proof
Only need quadratic terms indexed by N , RRLT implies those in B
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Notice C = R (straight red seg-
ment)

Equation w = y can be obtained via
RRLT: multiply equation x = 1 by y

and linearize via w
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L. , ITOR 2004:

RRLT constraints are linearly inde-
pendent

Preliminary results on pooling
problems
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L. , JOGO 2005:

General theory of RRLT con-
straints

Reformulation proofs
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L. & Pantelides, JOGO 2006:

Graph-based automatic reformula-
tion algorithm

Full computational results on pool-
ing and blending problems
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L. , Lavor, Maculan, Chaer Nasci-
mento, DAM 2009:

Application of an RRLT-2 subset
to solving Hartree-Fock systems
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� Feasible region of QCQP: use RN instead of C
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� Feasible region of QCQP: use RN instead of C
� RN relies on quadratic constraints ∀(j, ℓ) ∈ N (wjℓ = xjxℓ)
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� Feasible region of QCQP: use RN instead of C
� RN relies on quadratic constraints ∀(j, ℓ) ∈ N (wjℓ = xjxℓ)
� Degree of freedom: choice of basic/nonbasic partition

B,N of [n]× [n]
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� Feasible region of QCQP: use RN instead of C
� RN relies on quadratic constraints ∀(j, ℓ) ∈ N (wjℓ = xjxℓ)
� Degree of freedom: choice of basic/nonbasic partition

B,N of [n]× [n]
� (j, ℓ) ↔ volume Vjℓ of conv. env. of xjxℓ
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� Feasible region of QCQP: use RN instead of C
� RN relies on quadratic constraints ∀(j, ℓ) ∈ N (wjℓ = xjxℓ)
� Degree of freedom: choice of basic/nonbasic partition

B,N of [n]× [n]
� (j, ℓ) ↔ volume Vjℓ of conv. env. of xjxℓ
� Convexity gap: V(N) =

∑

(j,ℓ)∈N

Vjℓ
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� Feasible region of QCQP: use RN instead of C
� RN relies on quadratic constraints ∀(j, ℓ) ∈ N (wjℓ = xjxℓ)
� Degree of freedom: choice of basic/nonbasic partition

B,N of [n]× [n]
� (j, ℓ) ↔ volume Vjℓ of conv. env. of xjxℓ
� Convexity gap: V(N) =

∑

(j,ℓ)∈N

Vjℓ

� Let N∗ = argminN V(N)
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� Feasible region of QCQP: use RN instead of C
� RN relies on quadratic constraints ∀(j, ℓ) ∈ N (wjℓ = xjxℓ)
� Degree of freedom: choice of basic/nonbasic partition

B,N of [n]× [n]
� (j, ℓ) ↔ volume Vjℓ of conv. env. of xjxℓ
� Convexity gap: V(N) =

∑

(j,ℓ)∈N

Vjℓ

� Let N∗ = argminN V(N)

Smaller gap ⇒ tight bound more likely
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� Feasible region of QCQP: use RN instead of C
� RN relies on quadratic constraints ∀(j, ℓ) ∈ N (wjℓ = xjxℓ)
� Degree of freedom: choice of basic/nonbasic partition

B,N of [n]× [n]
� (j, ℓ) ↔ volume Vjℓ of conv. env. of xjxℓ
� Convexity gap: V(N) =

∑

(j,ℓ)∈N

Vjℓ

� Let N∗ = argminN V(N)

Smaller gap ⇒ tight bound more likely

� B,N partition [n]× [n] ⇒ N∗ = [n]× [n]r argmaxB V(B)
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� Feasible region of QCQP: use RN instead of C
� RN relies on quadratic constraints ∀(j, ℓ) ∈ N (wjℓ = xjxℓ)
� Degree of freedom: choice of basic/nonbasic partition

B,N of [n]× [n]
� (j, ℓ) ↔ volume Vjℓ of conv. env. of xjxℓ
� Convexity gap: V(N) =

∑

(j,ℓ)∈N

Vjℓ

� Let N∗ = argminN V(N)

Smaller gap ⇒ tight bound more likely

� B,N partition [n]× [n] ⇒ N∗ = [n]× [n]r argmaxB V(B)
� Reduces to finding a max-weight basis of a linear system
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� Feasible region of QCQP: use RN instead of C
� RN relies on quadratic constraints ∀(j, ℓ) ∈ N (wjℓ = xjxℓ)
� Degree of freedom: choice of basic/nonbasic partition

B,N of [n]× [n]
� (j, ℓ) ↔ volume Vjℓ of conv. env. of xjxℓ
� Convexity gap: V(N) =

∑

(j,ℓ)∈N

Vjℓ

� Let N∗ = argminN V(N)

Smaller gap ⇒ tight bound more likely

� B,N partition [n]× [n] ⇒ N∗ = [n]× [n]r argmaxB V(B)
� Reduces to finding a max-weight basis of a linear system
� Greedy algorithm solves problem optimally
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Consider general polynomial programming MINLP

min
x∈Rn1×Zn2

g0(x)

∀i ≤ q gi(x) ≤ 0
Ax = b
x ∈ X ∩ [xL, xU ]



















where gi ∈ Q[x] for all i ∈ {0, . . . , q}
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� Reformulation: for all J ⊆ [n− 1] multiply Ax = b by
∏

j∈J

xj
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� Reformulation: for all J ⊆ [n− 1] multiply Ax = b by
∏

j∈J

xj

� Linearization: replace each term
∏

j∈J

xj by the added

variable wJ (for all J ⊆ [n])
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� Reformulation: for all J ⊆ [n− 1] multiply Ax = b by
∏

j∈J

xj

� Linearization: replace each term
∏

j∈J

xj by the added

variable wJ (for all J ⊆ [n])
� Adjoin defining constraints wJ =

∏

j∈J

xj

� Define natural extensions of C,RN :

C = {(x,w) | Ax = b ∧ ∀J ⊆ [n− 1] (wJ =
∏

j∈J

xj}

RN = {(x,w) | Ax = b ∧ ∀J ⊆ [n− 1] (AwJ = bwJ ) ∧

∀J ∈ N (wJ =
∏

j∈J

xj)}

where wJ = (w(J,1), . . . , w(J,n))
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� Reformulation: for all J ⊆ [n− 1] multiply Ax = b by
∏

j∈J

xj

� Linearization: replace each term
∏

j∈J

xj by the added

variable wJ (for all J ⊆ [n])
� Adjoin defining constraints wJ =

∏

j∈J

xj

� Define natural extensions of C,RN :

C = {(x,w) | Ax = b ∧ ∀J ⊆ [n− 1] (wJ =
∏

j∈J

xj}

RN = {(x,w) | Ax = b ∧ ∀J ⊆ [n− 1] (AwJ = bwJ ) ∧

∀J ∈ N (wJ =
∏

j∈J

xj)}

where wJ = (w(J,1), . . . , w(J,n))

Main result C = RN still holds
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� Choice of optimal N extends from quadratic case, but:
� Added complication:

– Vij and Vijk are expressed in different units of measure
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� Choice of optimal N extends from quadratic case, but:
� Added complication:

– Vij and Vijk are expressed in different units of measure
– Summing up VJ for J ’s of different sizes may not make

much sense
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� Choice of optimal N extends from quadratic case, but:
� Added complication:

– Vij and Vijk are expressed in different units of measure
– Summing up VJ for J ’s of different sizes may not make

much sense

� Multi-objective problem: ∀p ∈ [n] max
∑

|J |=p

VJ
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� Choice of optimal N extends from quadratic case, but:
� Added complication:

– Vij and Vijk are expressed in different units of measure
– Summing up VJ for J ’s of different sizes may not make

much sense

� Multi-objective problem: ∀p ∈ [n] max
∑

|J |=p

VJ

Thm.
Efficient solution is an optimum of max

∑

J⊆[n]

VJ
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� Choice of optimal N extends from quadratic case, but:
� Added complication:

– Vij and Vijk are expressed in different units of measure
– Summing up VJ for J ’s of different sizes may not make

much sense

� Multi-objective problem: ∀p ∈ [n] max
∑

|J |=p

VJ

Thm.
Efficient solution is an optimum of max

∑

J⊆[n]

VJ

� Greedy is still OK
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� Polynomial programs are never dense in practice

� RRLT needs B ∪N = P([n])

� Need to introduce exponentially many new monomials

?
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� β =set of multi-indices for monomials already in problem
� Every new monomial J 6∈ β yields a new variable wJ
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� β =set of multi-indices for monomials already in problem
� Every new monomial J 6∈ β yields a new variable wJ

� Sometimes ∃J 6∈ β s.t. wJ yields > 1 new RRLT constr.
� E.g.:

x1 + x2 = 1 ∧ 2x1 − x2 = 3 ∧ β = {(1, 3)}

one new monomial (x2x3) ⇒ two new RRLT constraints
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� β =set of multi-indices for monomials already in problem
� Every new monomial J 6∈ β yields a new variable wJ

� Sometimes ∃J 6∈ β s.t. wJ yields > 1 new RRLT constr.
� E.g.:

x1 + x2 = 1 ∧ 2x1 − x2 = 3 ∧ β = {(1, 3)}

one new monomial (x2x3) ⇒ two new RRLT constraints

x1 + x2 = 1 (×x3 =) w13 + w23 = x3

2x1 − x2 = 3 (×x3 =) 2w13 − w23 = 3x3

� Principle: one new equation, one fewer degrees of freedom
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� β =set of multi-indices for monomials already in problem
� Every new monomial J 6∈ β yields a new variable wJ

� Sometimes ∃J 6∈ β s.t. wJ yields > 1 new RRLT constr.
� E.g.:

x1 + x2 = 1 ∧ 2x1 − x2 = 3 ∧ β = {(1, 3)}

one new monomial (x2x3) ⇒ two new RRLT constraints

x1 + x2 = 1 (×x3 =) w13 + w23 = x3

2x1 − x2 = 3 (×x3 =) 2w13 − w23 = 3x3

� Principle: one new equation, one fewer degrees of freedom

Create fewer J ’s than new RRLT constraints
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� Problem:

Look for subset ρ of rows of Ax = b to be multiplied
by a subset σ of P([n− 1]) such that the number of
new vars wJ is < number of new RRLT constraints
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� Problem:

Look for subset ρ of rows of Ax = b to be multiplied
by a subset σ of P([n− 1]) such that the number of
new vars wJ is < number of new RRLT constraints

� Formalization: consider bipartite graph (U, V,E)

wL × (a1x = b1)

wH × (a1x = b1)

wL × (a2x = b2)

wJ × (aix = bi)

J̄

H̄

L̄



Sparsity 3/4

Introduction

Reformulation-
Linearization
Technique

RLT literature
review

Reduced RLT

RRLT literature
review

New developments

Optimal RRLT

RRLT for polynomial
programming 1/3

RRLT for polynomial
programming 2/3

RRLT for polynomial
programming 3/3

Sparsity 1/4

Sparsity 2/4

⊲ Sparsity 3/4

Sparsity 4/4

Why bother?

Thank you

Compact relaxations SEA 2012 – 36 / 40

� Problem:

Look for subset ρ of rows of Ax = b to be multiplied
by a subset σ of P([n− 1]) such that the number of
new vars wJ is < number of new RRLT constraints

� Formalization: consider bipartite graph (U, V,E)

wL × (a1x = b1)

wH × (a1x = b1)

wL × (a2x = b2)

wJ × (aix = bi)

J̄

H̄

L̄

� U=row i by var. wJ (indexed by (i, J))
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� Problem:

Look for subset ρ of rows of Ax = b to be multiplied
by a subset σ of P([n− 1]) such that the number of
new vars wJ is < number of new RRLT constraints

� Formalization: consider bipartite graph (U, V,E)

wL × (a1x = b1)

wH × (a1x = b1)

wL × (a2x = b2)

wJ × (aix = bi)

J̄

H̄

L̄

� U=row i by var. wJ (indexed by (i, J))
� V=var. wJ̄ with J̄ 6∈ β (indexed by J̄)
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� Problem:

Look for subset ρ of rows of Ax = b to be multiplied
by a subset σ of P([n− 1]) such that the number of
new vars wJ is < number of new RRLT constraints

� Formalization: consider bipartite graph (U, V,E)

wL × (a1x = b1)

wH × (a1x = b1)

wL × (a2x = b2)

wJ × (aix = bi)

J̄

H̄

L̄

� U=row i by var. wJ (indexed by (i, J))
� V=var. wJ̄ with J̄ 6∈ β (indexed by J̄)
� Edges: E=incidence of added vars in RRLT constrs
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� Problem:

Look for subset ρ of rows of Ax = b to be multiplied
by a subset σ of P([n− 1]) such that the number of
new vars wJ is < number of new RRLT constraints

� Formalization: consider bipartite graph (U, V,E)

wL × (a1x = b1)

wH × (a1x = b1)

wL × (a2x = b2)

wJ × (aix = bi)

J̄

H̄

L̄

� U=row i by var. wJ (indexed by (i, J))
� V=var. wJ̄ with J̄ 6∈ β (indexed by J̄)
� Edges: E=incidence of added vars in RRLT constrs

Aim: find induced subgraph (U ′, V ′, E′) such that |U ′| is max-
imum, |U ′| > |V ′|, and V ′ =neighb(U ′)
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Mathematical Programming formulation:

max
∑

(i,J ′)∈U

ui,J ′

∑

(i,J ′)∈U

ui,J ′ ≥
∑

J 6∈β

vJ + 1

∀{(i, J ′), J} ∈ E vJ ≥ ui,J ′

u ∈ {0, 1}|U |

v ∈ {0, 1}|P([n])rβ|.


































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Mathematical Programming formulation:

max
∑

(i,J ′)∈U

ui,J ′

∑

(i,J ′)∈U

ui,J ′ ≥
∑

J 6∈β

vJ + 1

∀{(i, J ′), J} ∈ E vJ ≥ ui,J ′

u ∈ {0, 1}|U |

v ∈ {0, 1}|P([n])rβ|.



































Thm.
This problem is in P

Proof
Use matching-based algorithm
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� CPU time in sBB: number of nodes, time to solve each node
� Need few, small convex relaxation LPs
� Usually concentrate on few (tight bound) but large (valid

cuts)
� Different approach: slacken bound, aim to solve each LP

faster
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� CPU time in sBB: number of nodes, time to solve each node
� Need few, small convex relaxation LPs
� Usually concentrate on few (tight bound) but large (valid

cuts)
� Different approach: slacken bound, aim to solve each LP

faster

Outcome:

– bound quality: 0.07% worse;
– CPU improvement: 40%

� Future work: embed in sBB
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