Algorithms for subnetwork mining in heterogeneous networks 11th Symposium on Experimental Algorithms (SEA'12)

Guillaume Fertin, Hafedh Mohamed-Babou, Irena Rusu

Université de Nantes, LINA - UMR CNRS 6241, France.

Friday 8th June 2012

Outline

- Types of biological networks
- Biological networks comparison
- New approach : Skew SubGraph Mining (SkewGraM)
- Polynomial-time algorithms and harness results
- Conclusion & perspectives

Types of biological networks

Gene regulatory network M.M. Babu et al. [2004]

Homogeneous and Heterogeneous networks

- ullet Homogeneous networks A and B:
 - same type, same graph representation, different species (interspecies).
- ullet Heterogeneous networks A and B:
 - different type, different graph representation (e.g. a directed graph vs. an undirected graph), same species (intraspecies).

Homogeneous networks comparison

Automatic methods: networks alignment [Kelley et al. 2003, 2006].

Heterogeneous networks comparison

How to compare two heterogeneous networks A and B?

Manual or case-by-case methods :

- Metabolic network vs. linear genome [Zheng et al. 2002], [Rison et al. 2002], [Lee et al. 2004], [Pal 2004.], [Boyer et al. 2005, 2009].
- Metabolic network vs. protein-protein interaction network [Pawel et al. 2008], [Huthmacher et al. 2008].

Heterogeneous networks comparison

How to compare two heterogeneous networks A and B?

Manual or case-by-case methods :

- Metabolic network vs. linear genome [Zheng et al. 2002], [Rison et al. 2002], [Lee et al. 2004], [Pal 2004.], [Boyer et al. 2005, 2009].
- Metabolic network vs. protein-protein interaction network [Pawel et al. 2008], [Huthmacher et al. 2008].

.. We need a unified modeling, a unified algorithmic analysis, and unified solutions to this type of problems.

Our model

- D = (V, A) : directed graph;
- G = (V, E): an undirected graph on the same vertex set of G.

Definition. A path P in D is called (D,G)-consistent if G[V(P)] is connected.

Our model

The problem ONE-TO-ONE SKEWGRAM

Input. A directed graph D=(V,A), an undirected graph G=(V,A).

Question. Find the longest (D, G)-consistent path.

Longest (\overline{D}, G) -consistent path : example 1

Longest (D, G)-consistent path : example 2

Complexity of ONE-TO-ONE SKEWGRAM

When D is an arbitrarily directed graph, ONE-TO-ONE SKEWGRAM contains the LONGEST PATH PROBLEM as a sub-problem. Thus ONE-TO-ONE SKEWGRAM is NP-complete.

When D is a DAG?

Complexity of ONE-TO-ONE SKEWGRAM when D is a DAG

 D^* is the underlying graph of D.

G	Tree	Outerplanar	General graph
Chordless path or cycle, (bi-)star		Р	
Tree with diameter 4	Р	NPC	NPC
General graph	Р	NPC	NPC
			APX-hard

TABLE: Complexity of the ONE-TO-ONE SKEWGRAM problem.

Theorem. One-to-one SkewGraM (in its decision version) is NP-complete, even when D^* is an outerplanar graph and G is a tree of diameter 4.

Theorem. One-to-one SkewGraM (in its decision version) is NP-complete, even when D^* is an outerplanar graph and G is a tree of diameter 4.

• ONE-TO-ONE SKEWGRAM is in NP.

Theorem. One-to-one SkewGraM (in its decision version) is NP-complete, even when D^* is an outerplanar graph and G is a tree of diameter 4.

• ONE-TO-ONE SKEWGRAM is in NP.

A reduction from MAX 2SAT:

- $V_n = \{x_1, \dots x_n\}$ is a set of variables;
- ullet $\mathcal{C} = \{C_1, \dots, C_p\}$ is a set of p clauses over \mathcal{V}_n ;
- Each clause is a disjunction of two literals.

Goal: find an assignment that satisfies a **maximum number** of clauses.

Let $\mathcal{C}=\{C_1,\ldots,C_p\}$ and $\mathcal{V}_n=\{x_1,\ldots x_n\}$ be an instance of MAX $2\mathrm{Sat}$.

Let $\mathcal{C} = \{C_1, \dots, C_p\}$ and $\mathcal{V}_n = \{x_1, \dots x_n\}$ be an instance of MAX $2\mathrm{SAT}$.

We build the directed graph D on 2p + 2n + 2 levels.

level 0 : a vertex s;

$$\begin{array}{c} p = 2 \text{ and } n = 3 \\ \mathcal{C} = \{C_1, \frac{C_2}{C_2}\} \\ C_1 = (x_1 \vee x_3), \frac{C_2}{C_2} = (\overline{x_1} \vee x_2) \\ \mathcal{X} = \{x_1, x_2, x_3\} \end{array}$$

 L_0

D

Let $\mathcal{C} = \{C_1, \dots, C_p\}$ and $\mathcal{V}_n = \{x_1, \dots x_n\}$ be an instance of MAX $2\mathrm{SAT}$.

- level 0 : a vertex s;
- level 2i-1, $1 \leq i \leq p$: $v_{i,1}$ and $v_{i,2}$ correspond to the literals of clause C_i ;
- level 2i, $1 \le i \le p : c_i$ corresponds to C_i ;

$$\begin{array}{c} p = 2 \text{ and } n = 3 \\ \mathcal{C} = \{C_1, C_2\} \\ C_1 = (x_1 \vee x_3), \ C_2 = (\overline{x_1} \vee x_2) \\ \mathcal{X} = \{x_1, x_2, x_3\} \end{array}$$

$$\begin{array}{ccc}
L_0 & L_1 & L_2 \\
 & & & \\
\hline
 & &$$

Let $\mathcal{C} = \{C_1, \dots, C_p\}$ and $\mathcal{V}_n = \{x_1, \dots x_n\}$ be an instance of MAX $2\mathrm{SAT}$.

- level 0 : a vertex s;
- level 2i-1, $1 \leq i \leq p$: $v_{i,1}$ and $v_{i,2}$ correspond to the literals of clause C_i ;
- level 2i, $1 \le i \le p : c_i$ corresponds to C_i ;

$$p = 2 \text{ and } n = 3$$

$$C = \{C_1, C_2\}$$

$$C_1 = (x_1 \lor x_3), C_2 = (\overline{x_1} \lor x_2)$$

$$\mathcal{X} = \{x_1, x_2, x_3\}$$

Let $\mathcal{C} = \{C_1, \dots, C_p\}$ and $\mathcal{V}_n = \{x_1, \dots x_n\}$ be an instance of MAX $2\mathrm{SAT}$.

- level 0 : a vertex s:
- level 2i-1, $1 \leq i \leq p$: $v_{i,1}$ and $v_{i,2}$ correspond to the literals of clause C_i ;
- level 2i, $1 \le i \le p$: c_i corresponds to C_i ;
- level $2p + 1 : v_{p+1,1}$ and $v_{p+1,2}$ correspond, respectively, to x_n and $\overline{x_n}$;
- level $2p + 2 : c_{p+1}$;

$$p = 2 \text{ and } n = 3$$

$$C = \{C_1, C_2\}$$

$$C_1 = (x_1 \lor x_3), C_2 = (\overline{x_1} \lor x_2)$$

$$\mathcal{X} = \{x_1, x_2, x_3\}$$

$$L_0 \quad L_1 \quad L_2 \quad L_3 \quad L_4 \quad L_5 \quad L_6$$
 $v_{1,1} \quad v_{2,1} \quad v_{3,1}$
 $v_{1,2} \quad v_{2,2} \quad v_{3,2}$

Let $\mathcal{C}=\{C_1,\ldots,C_p\}$ and $\mathcal{V}_n=\{x_1,\ldots x_n\}$ be an instance of MAX $2\mathrm{SAT}$.

- level 0 : a vertex s;
- $\begin{array}{ll} \bullet & \text{level } 2i-1, \ 1 \leq i \leq p: \\ v_{i,1} & \text{and } v_{i,2} & \text{correspond} \\ \text{to the literals of clause} \\ C_i \ ; \end{array}$
- level 2i, $1 \le i \le p : c_i$ corresponds to C_i ;
- level $2p+1: v_{p+1,1}$ and $v_{p+1,2}$ correspond, respectively, to x_n and $\overline{x_n}$;
- level $2p + 2 : c_{p+1}$;
- level 2p + 2 + 2j 1, $1 \le j \le n : a_j$ and b_j correspond, respectively, to x_j and $\overline{x_j}$;
- level 2p + 2 + 2i, $1 \le j \le n 1 : A_j$.

$$p = 2 \text{ and } n = 3$$

$$C = \{C_1, C_2\}$$

$$C_1 = (x_1 \lor x_3), C_2 = (\overline{x_1} \lor x_2)$$

$$\mathcal{X} = \{x_1, x_2, x_3\}$$

Let $\mathcal{C} = \{C_1, \dots, C_p\}$ and $\mathcal{V}_n = \{x_1, \dots x_n\}$ be an instance of MAX $2\mathrm{SAT}$.

(s)

We build the directed graph D on 2p + 2n + 2 levels.

- level 0 : a vertex s;
- $\begin{array}{ll} \bullet & \text{level } 2i-1, \ 1 \leq i \leq p: \\ v_{i,1} & \text{and } v_{i,2} & \text{correspond} \\ \text{to the literals of clause} \\ C_i \ ; \end{array}$
- level 2i, $1 \le i \le p : c_i$ corresponds to C_i ;
- level $2p+1: v_{p+1,1}$ and $v_{p+1,2}$ correspond, respectively, to x_n and $\overline{x_n}$;
- level $2p + 2 : c_{p+1}$;
- level 2p + 2 + 2j 1, $1 \le j \le n : a_j$ and b_j correspond, respectively, to x_j and $\overline{x_j}$;
- level 2p + 2 + 2i, $1 \le j \le n 1 : A_j$.

$$p = 2 \text{ and } n = 3$$

$$C = \{C_1, C_2\}$$

$$C_1 = (x_1 \lor x_3), C_2 = (\overline{x_1} \lor x_2)$$

$$\mathcal{X} = \{x_1, x_2, x_3\}$$

 L_0 L_1 L_2 L_3 L_4 L_5 L_6 L_7 L_8 L_9 L_{10}

 (b_1)

Let $\mathcal{C} = \{C_1, \dots, C_p\}$ and $\mathcal{V}_n = \{x_1, \dots x_n\}$ be an instance of MAX $2\mathrm{SAT}$.

(s)

We build the directed graph D on 2p + 2n + 2 levels.

- level 0 : a vertex s;
- $\begin{array}{l} \bullet \ \ \text{level} \ 2i-1, \ 1 \leq i \leq p: \\ v_{i,1} \ \ \text{and} \ \ v_{i,2} \ \ \text{correspond} \\ \text{to the literals of clause} \\ C_i \ ; \end{array}$
- level 2i, $1 \le i \le p : c_i$ corresponds to C_i ;
- level $2p+1: v_{p+1,1}$ and $v_{p+1,2}$ correspond, respectively, to x_n and $\overline{x_n}$;
- level $2p + 2 : c_{p+1}$;
- level 2p + 2 + 2j 1, $1 \le j \le n : a_j$ and b_j correspond, respectively, to x_j and $\overline{x_j}$;
- level 2p + 2 + 2i, $1 \le j \le n 1 : A_j$.

$$\begin{array}{c} p = 2 \text{ and } n = 3 \\ \mathcal{C} = \{C_1, \frac{C_2}{C_2}\} \\ C_1 = (x_1 \vee x_3), \frac{C_2}{C_2} = (\overline{x_1} \vee x_2) \\ \mathcal{X} = \{x_1, x_2, x_3\} \end{array}$$

$$L_0$$
 L_1 L_2 L_3 L_4 L_5 L_6 L_7 L_8 L_9 L_{10} L_{11}

$$(v_{1,2})$$
 $(v_{3,2})$ $(v_{3,2})$ $(v_{3,1})$ $(v_{3,2})$ $(v_{3,2})$ $(v_{3,2})$

L

Let $\mathcal{C} = \{C_1, \dots, C_p\}$ and $\mathcal{V}_n = \{x_1, \dots x_n\}$ be an instance of MAX $2\mathrm{SAT}$.

- level 0 : a vertex s;
- $\begin{array}{ll} \bullet & \text{level } 2i-1, \ 1 \leq i \leq p: \\ v_{i,1} & \text{and } v_{i,2} & \text{correspond} \\ \text{to the literals of clause} \\ C_i \ ; \end{array}$
- level 2i, $1 \le i \le p$: c_i corresponds to C_i ;
- level $2p+1:v_{p+1,1}$ and $v_{p+1,2}$ correspond, respectively, to x_n and $\overline{x_n}$;
- level $2p + 2 : c_{p+1}$;
- level 2p + 2 + 2j 1, $1 \le j \le n : a_j$ and b_j correspond, respectively, to x_j and $\overline{x_j}$;
- level 2p + 2 + 2i, $1 \le j \le n 1 : A_j$.

$$\begin{array}{c} p = 2 \text{ and } n = 3 \\ \mathcal{C} = \{C_1, \frac{C_2}{C_2}\} \\ C_1 = (x_1 \vee x_3), \frac{C_2}{C_2} = (\overline{x_1} \vee x_2) \\ \mathcal{X} = \{x_1, x_2, x_3\} \end{array}$$

Let $\mathcal{C} = \{C_1, \dots, C_p\}$ and $\mathcal{V}_n = \{x_1, \dots x_n\}$ be an instance of MAX $2\mathrm{SAT}$.

- level 0 : a vertex s;
- $\begin{array}{ll} \bullet & \text{level } 2i-1, \ 1 \leq i \leq p: \\ v_{i,1} & \text{and } v_{i,2} & \text{correspond} \\ \text{to the literals of clause} \\ C_i \ ; \end{array}$
- level 2i, $1 \le i \le p : c_i$ corresponds to C_i ;
- level $2p+1:v_{p+1,1}$ and $v_{p+1,2}$ correspond, respectively, to x_n and $\overline{x_n}$;
- level $2p + 2 : c_{p+1}$;
- level 2p + 2 + 2j 1, $1 \le j \le n : a_j$ and b_j correspond, respectively, to x_j and $\overline{x_j}$;
- level 2p + 2 + 2i, $1 \le j \le n 1 : A_j$.

$$\begin{array}{c} p = 2 \text{ and } n = 3 \\ \mathcal{C} = \{C_1, C_2\} \\ C_1 = (x_1 \vee x_3), \ C_2 = (\overline{x_1} \vee x_2) \\ \mathcal{X} = \{x_1, x_2, x_3\} \end{array}$$

$$C = \{C_1, C_2\} \\ C_1 = (x_1 \vee x_3), C_2 = (\overline{x_1} \vee x_2) \\ \mathcal{X} = \{x_1, x_2, x_3\}$$

 L_0 L_1 L_2 L_3 L_4 L_5 L_6 L_7 L_8 L_9 L_{10} L_{11}

$$C = \{C_1, C_2\} \\ C_1 = (x_1 \vee x_3), C_2 = (\overline{x_1} \vee x_2) \\ \mathcal{X} = \{x_1, x_2, x_3\}$$

 L_0 L_1 L_2 L_3 L_4 L_5 L_6 L_7 L_8 L_9 L_{10} L_{11}

$$C = \{C_1, C_2\}$$

$$C_1 = (x_1 \lor x_3), C_2 = (\overline{x_1} \lor x_2)$$

$$\mathcal{X} = \{x_1, x_2, x_3\}$$

 L_0 L_1 L_2 L_3 L_4 L_5 L_6 L_7 L_8 L_9 L_{10} L_{11}

We put an edge between a_i (resp. b_i) and any vertex $v_{l,m}$ corresponding to x_i (resp. $\overline{x_i}$).

$$C = \{C_1, C_2\}\$$

$$C_1 = (x_1 \lor x_3), C_2 = (\overline{x_1} \lor x_2)$$

$$\mathcal{X} = \{x_1, x_2, x_3\}$$

 $L_0 \quad L_1 \quad L_2 \quad L_3 \quad L_4 \ L_5 \ L_6 \ L_7 \ L_8 \ L_9 \ L_{10} L_{11}$

$$C = \{C_1, C_2\}\$$

$$C_1 = (x_1 \lor x_3), C_2 = (\overline{x_1} \lor x_2)$$

$$\mathcal{X} = \{x_1, x_2, x_3\}$$

 L_0 L_1 L_2 L_3 L_4 L_5 L_6 L_7 L_8 L_9 L_{10} L_{11}

Assignment :
$$\{x_1 = true, x_2 = false, x_3 = true\}$$

$$C = \{C_1, C_2\}$$

$$C_1 = (x_1 \lor x_3), C_2 = (\overline{x_1} \lor x_2)$$

$$\mathcal{X} = \{x_1, x_2, x_3\}$$

 $L_0 \quad L_1 \quad L_2 \quad L_3 \quad L_4 \ L_5 \ L_6 \ L_7 \ L_8 \ L_9 \ L_{10} L_{11}$

Assignment :
$$\{x_1 = true, x_2 = false, x_3 = true\}$$

$$C = \{C_1, C_2\}$$

$$C_1 = (x_1 \lor x_3), C_2 = (\overline{x_1} \lor x_2)$$

$$\mathcal{X} = \{x_1, x_2, x_3\}$$

 L_0 L_1 L_2 L_3 L_4 L_5 L_6 L_7 L_8 L_9 L_{10} L_{11}

Assignment :
$$\{x_1 = true, x_2 = false, x_3 = true\}$$

$$C = \{C_1, C_2\}$$

$$C_1 = (x_1 \lor x_3), C_2 = (\overline{x_1} \lor x_2)$$

$$\mathcal{X} = \{x_1, x_2, x_3\}$$

 $L_0 \quad L_1 \quad L_2 \quad L_3 \quad L_4 \ L_5 \ L_6 \ L_7 \ L_8 \ L_9 \ L_{10} L_{11}$

Assignment :
$$\{x_1 = true, x_2 = false, x_3 = true\}$$

$$C = \{C_1, C_2\}$$

$$C_1 = (x_1 \lor x_3), C_2 = (\overline{x_1} \lor x_2)$$

$$\mathcal{X} = \{x_1, x_2, x_3\}$$

 L_0 L_1 L_2 L_3 L_4 L_5 L_6 L_7 L_8 L_9 L_{10} L_{11}

Assignment :
$$\{x_1 = true, x_2 = false, x_3 = true\}$$

$$C = \{C_1, C_2\}$$

$$C_1 = (x_1 \lor x_3), C_2 = (\overline{x_1} \lor x_2)$$

$$\mathcal{X} = \{x_1, x_2, x_3\}$$

 L_0 L_1 L_2 L_3 L_4 L_5 L_6 L_7 L_8 L_9 L_{10} L_{11}

Complexity of the ONE-TO-ONE SKEWGRAM problem

Assignment :
$$\{x_1 = true, x_2 = false, x_3 = true\}$$

$$C = \{C_1, C_2\}$$

$$C_1 = (x_1 \lor x_3), C_2 = (\overline{x_1} \lor x_2)$$

$$\mathcal{X} = \{x_1, x_2, x_3\}$$

 L_0 L_1 L_2 L_3 L_4 L_5 L_6 L_7 L_8 L_9 L_{10} L_{11}

Property: There is an assignment that satisfies at least k clauses iff there is a (D,G)-consistent path of at least 10+k vertices.

Complexity of the ONE-TO-ONE SKEWGRAM problem

Assignment :
$$\{x_1 = true, x_2 = false, x_3 = true\}$$

$$C = \{C_1, C_2\}$$

$$C_1 = (x_1 \lor x_3), C_2 = (\overline{x_1} \lor x_2)$$

$$\mathcal{X} = \{x_1, x_2, x_3\}$$

 L_0 L_1 L_2 L_3 L_4 L_5 L_6 L_7 L_8 L_9 L_{10} L_{11}

 $\begin{array}{l} \textbf{Property}: \text{There is an assignment} \\ \text{that satisfies at least } k \text{ clauses iff} \\ \text{there is a } (D,G)\text{-consistent path of} \\ \text{at least } 10+k \text{ vertices.} \\ \end{array}$

Two algorithms for ONE-TO-ONE SKEWGRAM

- Heuristic called AlgoH.
- Exact exponential-time algorithm called ALGOBB using the branch and bound method.

Two algorithms for ONE-TO-ONE SKEWGRAM

- Heuristic called AlgoH.
- Exact exponential-time algorithm called ALGOBB using the branch and bound method.

Input : D = (V, A), G = (V, E), an arc $xy \in A$.

Output : A longest (D,G)-consistent path going through xy.

To solve ONE-TO-ONE SKEWGRAM, an execution is needed for every arc xy of D.

Rule 1 : Connectivity in D (reachability);

Rule 1 : Connectivity in D (reachability);

Rule 1 : Connectivity in D (reachability);

Rule 2 : Connectivity in G (bridges);

Rule 1 : Connectivity in D (reachability);

FIGURE: Computation of the cover set of the path $3 \rightarrow 4 \rightarrow 9$.

Rule 1 : Connectivity in D (reachability);

FIGURE: Computation of the cover set of the path $3 \rightarrow 4 \rightarrow 9$.

Rule 1 : Connectivity in D (reachability);

FIGURE: Computation of the cover set of the path $3 \rightarrow 4 \rightarrow 9$.

Rule 1 : Connectivity in D (reachability);

FIGURE: Computation of the cover set of the path $3 \rightarrow 4 \rightarrow 9$.

Rule 1 : Connectivity in D (reachability);

Rule 2 : Connectivity in G (bridges);

Rule 3 : Connectivity in D and G simultaneously (common connected components).

FIGURE: Computation of the cover set of the path $3 \rightarrow 4 \rightarrow 9$.

Rule 1 : Connectivity in D (reachability);

Rule 2 : Connectivity in G (bridges);

Rule 3 : Connectivity in D and G simultaneously (common connected components).

FIGURE: Computation of the cover set of the path $3 \rightarrow 4 \rightarrow 9$.

Rule 1 : Connectivity in D (reachability);

Rule 2 : Connectivity in G (bridges);

Rule 3 : Connectivity in D and G simultaneously (common connected components).

COVERSET
$$(3 \to 4 \to 9) = \{1, 2, 3, 4, 6, 7, 9\}$$

Rule 3 : Connectivity in D and G simultaneously (common connected components).

CoverSet
$$(3 \to 4 \to 9) = \{1, 2, 3, 4, 6, 7, 9\}$$

Property: Let p be a path in D. If D[COVERSET(p)] is Hamiltonian then its Hamiltonian path is the longest (D,G)-consistent path going through p.

Scoring function: for each directed path p, value(p) is the number of vertices of the longest path in D[COVERSET(p)].

- $\bullet \ \operatorname{AlgoH}(D,G,x\to y)$
- ① $cp := x \rightarrow y / * current path * /$
- **3** S := CoverSet(cp); G := G[S]; D := D[S];
- lacktriangle We compute the list L of paths obtained by extending cp by one vertex;
- **5** We compute p_{max} s.t. $value(p_{max}) = max\{value(p) : p \in L\}$.
- **(i)** We compute ph_{max} s.t. $value(ph_{max}) = max\{value(p) : p ∈ L \text{ and } D[COVERSET(p)] \text{ is Hamiltonian}\}.$
- $\bigcirc update(cs, ph_{max});$
- $cp := p_{max} ; return to step 3;$

End of the process : when $L = \emptyset$ or $value(p_{max}) \leq |V(cs)|$.

Performances of ALGOH

- |ALGOH| is the number of vertices of a solution found by the heuristic ALGOH.
- |ALGOBB| is the number of vertices of a solution found by ALGOBB.
- $\bullet \ \, \mathsf{Performance} \, \, \rho = \frac{|\mathtt{ALGOH}|}{|\mathtt{ALGOBB}|}.$

We vary two parameters :

- The number n of vertices of D and G (in the range 20, 30, 40, 50, 60);
- The probability p that an edge between any given two vertices exists (in the range 0.05, 0.1, 0.15, 0.2).

We vary two parameters :

- The number n of vertices of D and G (in the range $20,\ 30,\ 40,\ 50,\ 60$);
- The probability p that an edge between any given two vertices exists (in the range 0.05, 0.1, 0.15, 0.2).

For a fixed n and p we generated 500 instances :

- 100 couples (D,G);
- 5 arcs per couple;

$$n = 50$$

$$n = 60$$

 $n=60 \label{eq:norm}$ Speed-up : AlgoH was 11 times faster than AlgoBB

Performances of ALGOH on scale-free graphs

- \bullet Generation of 100 couples (D,G) of 100 vertices using the public toolkit NGCE (http://ngce.sourceforge.net/);
- ullet 10 arcs per couple.

Conclusion & perspectives

- ONE-TO-ONE SKEWGRAM: New approach to compare heterogeneous biological networks
- ONE-TO-ONE SKEWGRAM is NP-complete.
- Two algorithms for ONE-TO-ONE SKEWGRAM.

Perspectives

- Investigate the complexity of ONE-TO-ONE SKEWGRAM in terms of :
 - Approximability (on specific graph classes)
 - Fixed parameter algorithms
- Consider inexact variants of the problem.

