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Types of biological networks
Biological networks comparison
New approach : SKEW SUBGRAPH MINING (SKEWGRAM)
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Types of biological networks
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Homogeneous and Heterogeneous networks

@ Homogeneous networks A and B :

@ same type, same graph representation, different species
(interspecies).

@ Heterogeneous networks A and B :

o different type, different graph representation (e.g. a directed
graph vs. an undirected graph), same species (intraspecies).



Homogeneous networks comparison

Automatic methods : networks alignment [Kelley et al. 2003, 2006].
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Heterogeneous networks comparison

How to compare two heterogeneous networks A and B7?

Manual or case-by-case methods : )

@ Metabolic network vs. linear genome [Zheng et al. 2002],
[Rison et al. 2002], [Lee et al. 2004], [Pal 2004.], [Boyer et al.
2005, 2009].

@ Metabolic network vs. protein-protein interaction network
[Pawel et al. 2008], [Huthmacher et al. 2008].



Heterogeneous networks comparison

How to compare two heterogeneous networks A and B7?

Manual or case-by-case methods : )

@ Metabolic network vs. linear genome [Zheng et al. 2002],
[Rison et al. 2002], [Lee et al. 2004], [Pal 2004.], [Boyer et al.
2005, 2009].

@ Metabolic network vs. protein-protein interaction network
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.. We need a unified modeling, a unified algorithmic analysis, and
unified solutions to this type of problems.




o D= (V,A) : directed graph;
@ G = (V,E) : an undirected graph on the same vertex set of G.

Definition. A path P in D is called (D, G)-consistent if G[V (P)]
is connected.



The problem ONE-TO-ONE SKEWGRAM

Input. A directed graph D = (V, A), an undirected graph
G=(V,A).
Question. Find the longest (D, G)-consistent path.




Longest (D, G)-consistent path : example 1
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Longest (D, G)-consistent path : example 2




Complexity of ONE-TO-ONE SKEWGRAM

When D is an arbitrarily directed graph,
ONE-TO-ONE SKEWGRAM contains the LONGEST PATH

PROBLEM as a sub-problem. Thus ONE-TO-ONE SKEWGRAM is
NP-complete.

When D is a DAG?



Complexity of ONE-TO-ONE SKEWGRAM when D is a

DAG

D* is the underlying graph of D.

D
Tree | Outerplanar General graph
G
Chordless path or cycle, (bi-)star
Tree with diameter 4 P NPC NPC
General graph P NPC NPC
APX-hard

TABLE: Complexity of the ONE-TO-ONE SKEWGRAM problem.
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® ONE-TO-ONE SKEWGRAM is in NP.



Complexity of the ONE-TO-ONE SKEWGRAM problem

Theorem. ONE-TO-ONE SKEWGRAM (in its decision version) is
NP-complete, even when D* is an outerplanar graph and G is a
tree of diameter 4.

@ ONE-TO-ONE SKEWGRAM is in NP.
A reduction from MAX 2SAT :
oV, ={x1,...x,} is a set of variables;
o C={Cy,...,Cp} is a set of p clauses over V, ;
@ Each clause is a disjunction of two literals.

Goal : find an assignment that satisfies a maximum number of
clauses.
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MAX 2SAT.
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MAX 2SAT.
We build the directed graph D on 2p + 2n + 2 levels.

e level 0 : a vertex s;
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Complexity of the ONE-TO-ONE SKEWGRAM problem

C={Cy,Ca}
Cr = (z1Vazg), C2 = (T1Vx2)
X ={x1, 22,23}
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Complexity of the ONE-TO-ONE SKEWGRAM problem

C={Cy,Ca}
Cr = (z1Vazg), C2 = (T1Vx2)
X ={x1, 22,23}

Lo L1 L2 Ls L4 Ls Le¢ L7 Ls Lg L1oL11

We put an edge
between a; (resp. b;) and
any vertex vy ,,, corresponding
to z; (resp. T;).



Complexity of the ONE-TO-ONE SKEWGRAM problem
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Property : There is an assignment
that satisfies at least k clauses iff
there is a (D, G)-consistent path of
at least p + k + 2 + 2n vertices.
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Two algorithms for ONE-TO-ONE SKEWGRAM

@ Heuristic called ALGOH.

@ Exact exponential-time algorithm called ALGoBB using the
branch and bound method.

Input : D= (V,A), G=(V,E), an arc zy € A.

Output : A longest (D, G)-consistent path going through xy.

To solve ONE-TO-ONE SKEWGRAM, an execution is needed for
every arc zy of D.




Heuristic ALGOH : Part 1

Rule 1 : Connectivity in D (reachability) ;
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Heuristic ALGoH : Part 1 (cover set of a path)

Rule 1 : Connectivity in D (reachability) ;
Rule 2 : Connectivity in G (bridges) ;

Rule 3 : Connectivity in D and G simultaneously (common
connected components).
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Heuristic ALGoH : Part 1 (cover set of a path)

Rule 1 : Connectivity in D (reachability) ;
Rule 2 : Connectivity in G (bridges) ;
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Heuristic ALGoH : Part 1 (cover set of a path)

Rule 1 : Connectivity in D (reachability) ;
Rule 2 : Connectivity in G (bridges) ;

Rule 3 : Connectivity in D and G simultaneously (common
connected components).
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COVERSET(3 -4 — 9) = {1,2,3,4,6,7,9}



Heuristic ALGoH : Part 1 (cover set of a path)

Rule 3 : Connectivity in D and G simultaneously (common
connected components).

®
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COVERSET(3 —+ 4 — 9) = {1,2,3,4,6,7,9}

Property : Let p be a path in D. If D[COVERSET(p)] is
Hamiltonian then its Hamiltonian path is the longest
(D, G)-consistent path going through p.




Heuristic ALGOH : Part 2

Scoring function : for each directed path p, value(p) is the
number of vertices of the longest path in D[COVERSET(p)]. ’

o ALcoH(D, G,z — y)

@ cp:=2 — y /* current path */

@ cs:=0 /* current solution */

© S := CoverSET(cp); G := G[S]; D := D|[S];

0 We compute the list L of paths obtained by extending cp by one vertex;
g We compute pmaz s.t. value(pmaz) = maz{value(p) : p € L}.

a We compute phmaz s.t. value(phmaz) = maz{value(p) : p €
L and D[COVERSET(p)] is Hamiltonian}.

o update(cs, phmaxz) ;
Q Cp := Pmaz ; return to step 3;

End of the process : when L = 0 or value(pmas) < |V (cs)|. )




Performances of ALGOH

@ |ALcoH| is the number of vertices of a solution found by the
heuristic ALGOH.

@ |ALGOBB| is the number of vertices of a solution found by
ALGOBB.

ALcOH
o Performance p = -Axcotl

|ALGOBB|




Performances of ALGOH on Erdos-Rényi graphs

We vary two parameters :
@ The number n of vertices of D and G (in the range 20, 30,
40, 50, 60);

@ The probability p that an edge between any given two vertices
exists (in the range 0.05, 0.1, 0.15, 0.2).



Performances of ALGOH on Erdos-Rényi graphs

We vary two parameters :

@ The number n of vertices of D and G (in the range 20, 30,
40, 50, 60);

@ The probability p that an edge between any given two vertices
exists (in the range 0.05, 0.1, 0.15, 0.2).

For a fixed n and p we generated 500 instances :
@ 100 couples (D, G);

@ 5 arcs per couple;




Performances of ALGOH on Erdos-Rényi graphs
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Performances of ALGOH on Erdos-Rényi graphs

n = 60
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Performances of ALGOH on Erdos-Rényi graphs

n = 60
Speed-up : ALGOH was 11 times faster than ALGOBB
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Performances of ALGOH on scale-free graphs

@ Generation of 100 couples (D, G) of 100 vertices using the
public toolkit NGCE (http ://ngce.sourceforge.net/) ;
@ 10 arcs per couple.
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Conclusion & perspectives

o ONE-TO-ONE SKEWGRAM : New approach to compare
heterogeneous biological networks

@ ONE-TO-ONE SKEWGRAM is NP-complete.
@ Two algorithms for ONE-TO-ONE SKEWGRAM.



@ Investigate the complexity of ONE-TO-ONE SKEWGRAM in
terms of :

o Approximability (on specific graph classes)
@ Fixed parameter algorithms

@ Consider inexact variants of the problem.






