
A More Reliable Greedy Heuristic for
Maximum Matchings in
Sparse Random Graphs

Martin Dietzfelbinger1 Hendrik Peilke2 Michael Rink1

1Technische Universität Ilmenau

2IBYKUS AG

Introduction Algorithms Experiments Summary

Maximum Cardinality Matching

undirected graph G :

I A matching M is set of pairwise disjoint edges from G .
I M is a maximum matching if it has largest possible cardinality.
I The problem of finding a maximum matching is well

understood.

Heuristics for Matchings in Random Graphs

Introduction Algorithms Experiments Summary

Maximum Cardinality Matching

undirected graph G :
I A matching M is set of pairwise disjoint edges from G .

I M is a maximum matching if it has largest possible cardinality.
I The problem of finding a maximum matching is well

understood.

Heuristics for Matchings in Random Graphs

Introduction Algorithms Experiments Summary

Maximum Cardinality Matching

undirected graph G :
I A matching M is set of pairwise disjoint edges from G .
I M is a maximum matching if it has largest possible cardinality.

I The problem of finding a maximum matching is well
understood.

Heuristics for Matchings in Random Graphs

Introduction Algorithms Experiments Summary

Maximum Cardinality Matching

undirected graph G :
I A matching M is set of pairwise disjoint edges from G .
I M is a maximum matching if it has largest possible cardinality.
I The problem of finding a maximum matching is well

understood.

Heuristics for Matchings in Random Graphs

Introduction Algorithms Experiments Summary

Algorithms for Maximum Matchings

(arbitrary) graph G = (V ,E) with n nodes, m edges:

I first polynomial time algorithm [Edmonds, 1965] O(n2 ·m)
I many followed, e.g., [Micali and Vazirani, 1980] O(n1/2 ·m)
I for dense graphs m = Θ(n2) improved to O(nω) (expected),
ω < 2.376, by [Mucha and Sankowski, 2004]

random graph G (n; c) with n nodes, constant expected degree c :
I [Bast et al., 2006] showed that if c > 32.67 then maximum

matching can be found in time O(n · log n) (expected)
I conjectured that this holds for all constants c > 0

I [Chebolu et al., 2010] gave algorithm with running time O(n)
(expected)

The (exact) algorithms remain complicated!

What can be achieved with simpler algorithms?

Heuristics for Matchings in Random Graphs

Introduction Algorithms Experiments Summary

Algorithms for Maximum Matchings

(arbitrary) graph G = (V ,E) with n nodes, m edges:
I first polynomial time algorithm [Edmonds, 1965] O(n2 ·m)

I many followed, e.g., [Micali and Vazirani, 1980] O(n1/2 ·m)
I for dense graphs m = Θ(n2) improved to O(nω) (expected),
ω < 2.376, by [Mucha and Sankowski, 2004]

random graph G (n; c) with n nodes, constant expected degree c :
I [Bast et al., 2006] showed that if c > 32.67 then maximum

matching can be found in time O(n · log n) (expected)
I conjectured that this holds for all constants c > 0

I [Chebolu et al., 2010] gave algorithm with running time O(n)
(expected)

The (exact) algorithms remain complicated!

What can be achieved with simpler algorithms?

Heuristics for Matchings in Random Graphs

Introduction Algorithms Experiments Summary

Algorithms for Maximum Matchings

(arbitrary) graph G = (V ,E) with n nodes, m edges:
I first polynomial time algorithm [Edmonds, 1965] O(n2 ·m)
I many followed, e.g., [Micali and Vazirani, 1980] O(n1/2 ·m)

I for dense graphs m = Θ(n2) improved to O(nω) (expected),
ω < 2.376, by [Mucha and Sankowski, 2004]

random graph G (n; c) with n nodes, constant expected degree c :
I [Bast et al., 2006] showed that if c > 32.67 then maximum

matching can be found in time O(n · log n) (expected)
I conjectured that this holds for all constants c > 0

I [Chebolu et al., 2010] gave algorithm with running time O(n)
(expected)

The (exact) algorithms remain complicated!

What can be achieved with simpler algorithms?

Heuristics for Matchings in Random Graphs

Introduction Algorithms Experiments Summary

Algorithms for Maximum Matchings

(arbitrary) graph G = (V ,E) with n nodes, m edges:
I first polynomial time algorithm [Edmonds, 1965] O(n2 ·m)
I many followed, e.g., [Micali and Vazirani, 1980] O(n1/2 ·m)
I for dense graphs m = Θ(n2) improved to O(nω) (expected),
ω < 2.376, by [Mucha and Sankowski, 2004]

random graph G (n; c) with n nodes, constant expected degree c :
I [Bast et al., 2006] showed that if c > 32.67 then maximum

matching can be found in time O(n · log n) (expected)
I conjectured that this holds for all constants c > 0

I [Chebolu et al., 2010] gave algorithm with running time O(n)
(expected)

The (exact) algorithms remain complicated!

What can be achieved with simpler algorithms?

Heuristics for Matchings in Random Graphs

Introduction Algorithms Experiments Summary

Algorithms for Maximum Matchings

(arbitrary) graph G = (V ,E) with n nodes, m edges:
I first polynomial time algorithm [Edmonds, 1965] O(n2 ·m)
I many followed, e.g., [Micali and Vazirani, 1980] O(n1/2 ·m)
I for dense graphs m = Θ(n2) improved to O(nω) (expected),
ω < 2.376, by [Mucha and Sankowski, 2004]

random graph G (n; c) with n nodes, constant expected degree c :

I [Bast et al., 2006] showed that if c > 32.67 then maximum
matching can be found in time O(n · log n) (expected)

I conjectured that this holds for all constants c > 0
I [Chebolu et al., 2010] gave algorithm with running time O(n)

(expected)

The (exact) algorithms remain complicated!

What can be achieved with simpler algorithms?

Heuristics for Matchings in Random Graphs

Introduction Algorithms Experiments Summary

Algorithms for Maximum Matchings

(arbitrary) graph G = (V ,E) with n nodes, m edges:
I first polynomial time algorithm [Edmonds, 1965] O(n2 ·m)
I many followed, e.g., [Micali and Vazirani, 1980] O(n1/2 ·m)
I for dense graphs m = Θ(n2) improved to O(nω) (expected),
ω < 2.376, by [Mucha and Sankowski, 2004]

random graph G (n; c) with n nodes, constant expected degree c :
I [Bast et al., 2006] showed that if c > 32.67 then maximum

matching can be found in time O(n · log n) (expected)
I conjectured that this holds for all constants c > 0

I [Chebolu et al., 2010] gave algorithm with running time O(n)
(expected)

The (exact) algorithms remain complicated!

What can be achieved with simpler algorithms?

Heuristics for Matchings in Random Graphs

Introduction Algorithms Experiments Summary

Algorithms for Maximum Matchings

(arbitrary) graph G = (V ,E) with n nodes, m edges:
I first polynomial time algorithm [Edmonds, 1965] O(n2 ·m)
I many followed, e.g., [Micali and Vazirani, 1980] O(n1/2 ·m)
I for dense graphs m = Θ(n2) improved to O(nω) (expected),
ω < 2.376, by [Mucha and Sankowski, 2004]

random graph G (n; c) with n nodes, constant expected degree c :
I [Bast et al., 2006] showed that if c > 32.67 then maximum

matching can be found in time O(n · log n) (expected)
I conjectured that this holds for all constants c > 0

I [Chebolu et al., 2010] gave algorithm with running time O(n)
(expected)

The (exact) algorithms remain complicated!

What can be achieved with simpler algorithms?

Heuristics for Matchings in Random Graphs

Introduction Algorithms Experiments Summary

Algorithms for Maximum Matchings

(arbitrary) graph G = (V ,E) with n nodes, m edges:
I first polynomial time algorithm [Edmonds, 1965] O(n2 ·m)
I many followed, e.g., [Micali and Vazirani, 1980] O(n1/2 ·m)
I for dense graphs m = Θ(n2) improved to O(nω) (expected),
ω < 2.376, by [Mucha and Sankowski, 2004]

random graph G (n; c) with n nodes, constant expected degree c :
I [Bast et al., 2006] showed that if c > 32.67 then maximum

matching can be found in time O(n · log n) (expected)
I conjectured that this holds for all constants c > 0

I [Chebolu et al., 2010] gave algorithm with running time O(n)
(expected)

The (exact) algorithms remain complicated!

What can be achieved with simpler algorithms?

Heuristics for Matchings in Random Graphs

Introduction Algorithms Experiments Summary

Algorithms for Maximum Matchings

(arbitrary) graph G = (V ,E) with n nodes, m edges:
I first polynomial time algorithm [Edmonds, 1965] O(n2 ·m)
I many followed, e.g., [Micali and Vazirani, 1980] O(n1/2 ·m)
I for dense graphs m = Θ(n2) improved to O(nω) (expected),
ω < 2.376, by [Mucha and Sankowski, 2004]

random graph G (n; c) with n nodes, constant expected degree c :
I [Bast et al., 2006] showed that if c > 32.67 then maximum

matching can be found in time O(n · log n) (expected)
I conjectured that this holds for all constants c > 0

I [Chebolu et al., 2010] gave algorithm with running time O(n)
(expected)

The (exact) algorithms remain complicated!

What can be achieved with simpler algorithms?

Heuristics for Matchings in Random Graphs

Introduction Algorithms Experiments Summary

Matching Heuristics for Sparse Random Graphs

greedy heuristics for G (n; c):

I Karp-Sipser heuristic [Karp and Sipser, 1981, Aronson et al., 1998]
I if c < e ≈ 2.718 finds maximum matching (whp)
I if c > e ≈ 2.718 size of matching found is within n1/5+o(1) of

maximum cardinality
I experimental studies of several heuristics, e.g., [Magun, 1998]

I There are good greedy heuristics with linear running time that
are likely to find maximum matchings for a wide range of c .

I Even the best heuristic often fails in the range of about
2.6 ≤ c ≤ 3.8.

There is some region for c that seems critical for known greedy
matching heuristics!

Is there a greedy heuristic with no critical region?

Heuristics for Matchings in Random Graphs

Introduction Algorithms Experiments Summary

Matching Heuristics for Sparse Random Graphs

greedy heuristics for G (n; c):
I Karp-Sipser heuristic [Karp and Sipser, 1981, Aronson et al., 1998]

I if c < e ≈ 2.718 finds maximum matching (whp)
I if c > e ≈ 2.718 size of matching found is within n1/5+o(1) of

maximum cardinality

I experimental studies of several heuristics, e.g., [Magun, 1998]
I There are good greedy heuristics with linear running time that

are likely to find maximum matchings for a wide range of c .
I Even the best heuristic often fails in the range of about

2.6 ≤ c ≤ 3.8.

There is some region for c that seems critical for known greedy
matching heuristics!

Is there a greedy heuristic with no critical region?

Heuristics for Matchings in Random Graphs

Introduction Algorithms Experiments Summary

Matching Heuristics for Sparse Random Graphs

greedy heuristics for G (n; c):
I Karp-Sipser heuristic [Karp and Sipser, 1981, Aronson et al., 1998]

I if c < e ≈ 2.718 finds maximum matching (whp)
I if c > e ≈ 2.718 size of matching found is within n1/5+o(1) of

maximum cardinality
I experimental studies of several heuristics, e.g., [Magun, 1998]

I There are good greedy heuristics with linear running time that
are likely to find maximum matchings for a wide range of c .

I Even the best heuristic often fails in the range of about
2.6 ≤ c ≤ 3.8.

There is some region for c that seems critical for known greedy
matching heuristics!

Is there a greedy heuristic with no critical region?

Heuristics for Matchings in Random Graphs

Introduction Algorithms Experiments Summary

Matching Heuristics for Sparse Random Graphs

greedy heuristics for G (n; c):
I Karp-Sipser heuristic [Karp and Sipser, 1981, Aronson et al., 1998]

I if c < e ≈ 2.718 finds maximum matching (whp)
I if c > e ≈ 2.718 size of matching found is within n1/5+o(1) of

maximum cardinality
I experimental studies of several heuristics, e.g., [Magun, 1998]

I There are good greedy heuristics with linear running time that
are likely to find maximum matchings for a wide range of c .

I Even the best heuristic often fails in the range of about
2.6 ≤ c ≤ 3.8.

There is some region for c that seems critical for known greedy
matching heuristics!

Is there a greedy heuristic with no critical region?

Heuristics for Matchings in Random Graphs

Introduction Algorithms Experiments Summary

Matching Heuristics for Sparse Random Graphs

greedy heuristics for G (n; c):
I Karp-Sipser heuristic [Karp and Sipser, 1981, Aronson et al., 1998]

I if c < e ≈ 2.718 finds maximum matching (whp)
I if c > e ≈ 2.718 size of matching found is within n1/5+o(1) of

maximum cardinality
I experimental studies of several heuristics, e.g., [Magun, 1998]

I There are good greedy heuristics with linear running time that
are likely to find maximum matchings for a wide range of c .

I Even the best heuristic often fails in the range of about
2.6 ≤ c ≤ 3.8.

There is some region for c that seems critical for known greedy
matching heuristics!

Is there a greedy heuristic with no critical region?

Heuristics for Matchings in Random Graphs

Introduction Algorithms Experiments Summary

Result

We describe a new greedy heuristic with (close to) linear running
time and give experimental evidence that this heuristic is likely to
find a maximum matching in G (n; c) for all ranges of c .

I Our approach is motivated by the “selfless algorithm” of
[Sanders, 2004] for orienting undirected graphs.

I We compared (quality of solution) our new heuristic with
several good heuristics commonly used.

Heuristics for Matchings in Random Graphs

Introduction Algorithms Experiments Summary

Result

We describe a new greedy heuristic with (close to) linear running
time and give experimental evidence that this heuristic is likely to
find a maximum matching in G (n; c) for all ranges of c .

I Our approach is motivated by the “selfless algorithm” of
[Sanders, 2004] for orienting undirected graphs.

I We compared (quality of solution) our new heuristic with
several good heuristics commonly used.

Heuristics for Matchings in Random Graphs

Introduction Algorithms Experiments Summary

Result

We describe a new greedy heuristic with (close to) linear running
time and give experimental evidence that this heuristic is likely to
find a maximum matching in G (n; c) for all ranges of c .

I Our approach is motivated by the “selfless algorithm” of
[Sanders, 2004] for orienting undirected graphs.

I We compared (quality of solution) our new heuristic with
several good heuristics commonly used.

Heuristics for Matchings in Random Graphs

Introduction Algorithms Experiments Summary

Basic Structure

heuristics:

I set of simple reduction steps with a strict order of priority
I reduction step: select an edge and shrink the graph

algorithm

while G has an edge
select applicable reduction step with highest priority
apply the reduction

two kinds of reduction steps:
OPT never decrease the size of a maximum matching

[Karp and Sipser, 1981]
HEU can decrease the size of a maximum matching

Heuristics for Matchings in Random Graphs

Introduction Algorithms Experiments Summary

Basic Structure

heuristics:
I set of simple reduction steps with a strict order of priority
I reduction step: select an edge and shrink the graph

algorithm

while G has an edge
select applicable reduction step with highest priority
apply the reduction

two kinds of reduction steps:
OPT never decrease the size of a maximum matching

[Karp and Sipser, 1981]
HEU can decrease the size of a maximum matching

Heuristics for Matchings in Random Graphs

Introduction Algorithms Experiments Summary

Basic Structure

heuristics:
I set of simple reduction steps with a strict order of priority
I reduction step: select an edge and shrink the graph

algorithm

while G has an edge
select applicable reduction step with highest priority
apply the reduction

two kinds of reduction steps:
OPT never decrease the size of a maximum matching

[Karp and Sipser, 1981]
HEU can decrease the size of a maximum matching

Heuristics for Matchings in Random Graphs

Introduction Algorithms Experiments Summary

Basic Structure

heuristics:
I set of simple reduction steps with a strict order of priority
I reduction step: select an edge and shrink the graph

algorithm

while G has an edge
select applicable reduction step with highest priority
apply the reduction

two kinds of reduction steps:

OPT never decrease the size of a maximum matching
[Karp and Sipser, 1981]

HEU can decrease the size of a maximum matching

Heuristics for Matchings in Random Graphs

Introduction Algorithms Experiments Summary

Basic Structure

heuristics:
I set of simple reduction steps with a strict order of priority
I reduction step: select an edge and shrink the graph

algorithm

while G has an edge
select applicable reduction step with highest priority
apply the reduction

two kinds of reduction steps:
OPT never decrease the size of a maximum matching

[Karp and Sipser, 1981]
HEU can decrease the size of a maximum matching

Heuristics for Matchings in Random Graphs

Introduction Algorithms Experiments Summary

Optimal Reduction Steps

e

u

v

v1 v2

u

e

u

v u

v1 v2

vw v

OPT(1) :

I choose node u of degree 1
I incident edge e = {u, v} belongs to matching
I shrink graph

OPT(2) :

I choose node u of degree 2, adjacent to v1 and v2
I contract nodes into a single node v
I if {v ,w} becomes matching edge, by recursion,

replace {v ,w} with {v1,w} and add {u, v2}, or
replace {v ,w} with {v2,w} and add {u, v1}

Heuristics for Matchings in Random Graphs

Introduction Algorithms Experiments Summary

Optimal Reduction Steps

e

u

v

v1 v2

u

e

u

v u

v1 v2

vw v

OPT(1) :

I choose node u of degree 1
I incident edge e = {u, v} belongs to matching
I shrink graph

OPT(2) :

I choose node u of degree 2, adjacent to v1 and v2
I contract nodes into a single node v
I if {v ,w} becomes matching edge, by recursion,

replace {v ,w} with {v1,w} and add {u, v2}, or
replace {v ,w} with {v2,w} and add {u, v1}

Heuristics for Matchings in Random Graphs

Introduction Algorithms Experiments Summary

Optimal Reduction Steps

e

u

v

v1 v2

u

e

u

v u

v1 v2

vw v

OPT(1) : I choose node u of degree 1

I incident edge e = {u, v} belongs to matching
I shrink graph

OPT(2) :

I choose node u of degree 2, adjacent to v1 and v2
I contract nodes into a single node v
I if {v ,w} becomes matching edge, by recursion,

replace {v ,w} with {v1,w} and add {u, v2}, or
replace {v ,w} with {v2,w} and add {u, v1}

Heuristics for Matchings in Random Graphs

Introduction Algorithms Experiments Summary

Optimal Reduction Steps

e

u

v

v1 v2

u

e

u

v

u

v1 v2

vw v

OPT(1) : I choose node u of degree 1
I incident edge e = {u, v} belongs to matching

I shrink graph
OPT(2) :

I choose node u of degree 2, adjacent to v1 and v2
I contract nodes into a single node v
I if {v ,w} becomes matching edge, by recursion,

replace {v ,w} with {v1,w} and add {u, v2}, or
replace {v ,w} with {v2,w} and add {u, v1}

Heuristics for Matchings in Random Graphs

Introduction Algorithms Experiments Summary

Optimal Reduction Steps

e

u

v

v1 v2

u

e

u

v

u

v1 v2

vw v

OPT(1) : I choose node u of degree 1
I incident edge e = {u, v} belongs to matching
I shrink graph

OPT(2) :

I choose node u of degree 2, adjacent to v1 and v2
I contract nodes into a single node v
I if {v ,w} becomes matching edge, by recursion,

replace {v ,w} with {v1,w} and add {u, v2}, or
replace {v ,w} with {v2,w} and add {u, v1}

Heuristics for Matchings in Random Graphs

Introduction Algorithms Experiments Summary

Optimal Reduction Steps

e

u

v

v1 v2

u

e

u

v u

v1 v2

vw v

OPT(1) : I choose node u of degree 1
I incident edge e = {u, v} belongs to matching
I shrink graph

OPT(2) :

I choose node u of degree 2, adjacent to v1 and v2
I contract nodes into a single node v
I if {v ,w} becomes matching edge, by recursion,

replace {v ,w} with {v1,w} and add {u, v2}, or
replace {v ,w} with {v2,w} and add {u, v1}

Heuristics for Matchings in Random Graphs

Introduction Algorithms Experiments Summary

Optimal Reduction Steps

e

u

v

v1 v2

u

e

u

v u

v1 v2

vw v

OPT(1) : I choose node u of degree 1
I incident edge e = {u, v} belongs to matching
I shrink graph

OPT(2) :

I choose node u of degree 2, adjacent to v1 and v2
I contract nodes into a single node v
I if {v ,w} becomes matching edge, by recursion,

replace {v ,w} with {v1,w} and add {u, v2}, or
replace {v ,w} with {v2,w} and add {u, v1}

Heuristics for Matchings in Random Graphs

Introduction Algorithms Experiments Summary

Optimal Reduction Steps

e

u

v

v1 v2

u

e

u

v

u

v1 v2

vw v

OPT(1) : I choose node u of degree 1
I incident edge e = {u, v} belongs to matching
I shrink graph

OPT(2) : I choose node u of degree 2, adjacent to v1 and v2

I contract nodes into a single node v
I if {v ,w} becomes matching edge, by recursion,

replace {v ,w} with {v1,w} and add {u, v2}, or
replace {v ,w} with {v2,w} and add {u, v1}

Heuristics for Matchings in Random Graphs

Introduction Algorithms Experiments Summary

Optimal Reduction Steps

e

u

v

v1 v2

u

e

u

v

u

v1 v2

vw v

OPT(1) : I choose node u of degree 1
I incident edge e = {u, v} belongs to matching
I shrink graph

OPT(2) : I choose node u of degree 2, adjacent to v1 and v2
I contract nodes into a single node v

I if {v ,w} becomes matching edge, by recursion,

replace {v ,w} with {v1,w} and add {u, v2}, or
replace {v ,w} with {v2,w} and add {u, v1}

Heuristics for Matchings in Random Graphs

Introduction Algorithms Experiments Summary

Optimal Reduction Steps

e

u

v

v1 v2

u

e

u

v u

v1 v2

v

w v

OPT(1) : I choose node u of degree 1
I incident edge e = {u, v} belongs to matching
I shrink graph

OPT(2) : I choose node u of degree 2, adjacent to v1 and v2
I contract nodes into a single node v

I if {v ,w} becomes matching edge, by recursion,

replace {v ,w} with {v1,w} and add {u, v2}, or
replace {v ,w} with {v2,w} and add {u, v1}

Heuristics for Matchings in Random Graphs

Introduction Algorithms Experiments Summary

Optimal Reduction Steps

e

u

v

v1 v2

u

e

u

v u

v1 v2

vw v

OPT(1) : I choose node u of degree 1
I incident edge e = {u, v} belongs to matching
I shrink graph

OPT(2) : I choose node u of degree 2, adjacent to v1 and v2
I contract nodes into a single node v
I if {v ,w} becomes matching edge, by recursion,

replace {v ,w} with {v1,w} and add {u, v2}, or
replace {v ,w} with {v2,w} and add {u, v1}

Heuristics for Matchings in Random Graphs

Introduction Algorithms Experiments Summary

Optimal Reduction Steps

e

u

v

v1 v2

u

e

u

v u

v1 v2

vw v

OPT(1) : I choose node u of degree 1
I incident edge e = {u, v} belongs to matching
I shrink graph

OPT(2) : I choose node u of degree 2, adjacent to v1 and v2
I contract nodes into a single node v
I if {v ,w} becomes matching edge, by recursion,

replace {v ,w} with {v1,w} and add {u, v2}

, or
replace {v ,w} with {v2,w} and add {u, v1}

Heuristics for Matchings in Random Graphs

Introduction Algorithms Experiments Summary

Optimal Reduction Steps

e

u

v

v1 v2

u

e

u

v u

v1 v2

vw v

OPT(1) : I choose node u of degree 1
I incident edge e = {u, v} belongs to matching
I shrink graph

OPT(2) : I choose node u of degree 2, adjacent to v1 and v2
I contract nodes into a single node v
I if {v ,w} becomes matching edge, by recursion,

replace {v ,w} with {v1,w} and add {u, v2}, or
replace {v ,w} with {v2,w} and add {u, v1}

Heuristics for Matchings in Random Graphs

Introduction Algorithms Experiments Summary

Heuristic Reduction Steps

e

u

v

e

e

u

v

u

v

u

v
1
2 + 1

3

1
2 + 1

3

2 · 1
2 + 1

3
1
3 + 2 · 1

4

3 · 1
3 + 1

4

3 · 1
4

3 · 1
3 + 1

4

2 · 1
3 + 2 · 1

4 3 · 1
4

Choose an edge e = {u, v} to put in the matching and shrink the
graph.

HEU(rand) :

I e is randomly chosen

HEU(deg,deg) :

I u is a node of smallest degree
I v is a neighbor of u of smallest degree

HEU(pot,deg) :

I u is a node of smallest potential π(u), where

π(u) :=
∑

{u,v}∈E

1
deg(v)

I v is a neighbor of u of smallest degree

Heuristics for Matchings in Random Graphs

Introduction Algorithms Experiments Summary

Heuristic Reduction Steps

e

u

v

e

e

u

v

u

v

u

v
1
2 + 1

3

1
2 + 1

3

2 · 1
2 + 1

3
1
3 + 2 · 1

4

3 · 1
3 + 1

4

3 · 1
4

3 · 1
3 + 1

4

2 · 1
3 + 2 · 1

4 3 · 1
4

Choose an edge e = {u, v} to put in the matching and shrink the
graph.
HEU(rand) :

I e is randomly chosen
HEU(deg,deg) :

I u is a node of smallest degree
I v is a neighbor of u of smallest degree

HEU(pot,deg) :

I u is a node of smallest potential π(u), where

π(u) :=
∑

{u,v}∈E

1
deg(v)

I v is a neighbor of u of smallest degree

Heuristics for Matchings in Random Graphs

Introduction Algorithms Experiments Summary

Heuristic Reduction Steps

e

u

v

e

e

u

v

u

v

u

v
1
2 + 1

3

1
2 + 1

3

2 · 1
2 + 1

3
1
3 + 2 · 1

4

3 · 1
3 + 1

4

3 · 1
4

3 · 1
3 + 1

4

2 · 1
3 + 2 · 1

4 3 · 1
4

Choose an edge e = {u, v} to put in the matching and shrink the
graph.
HEU(rand) : I e is randomly chosen

HEU(deg,deg) :

I u is a node of smallest degree
I v is a neighbor of u of smallest degree

HEU(pot,deg) :

I u is a node of smallest potential π(u), where

π(u) :=
∑

{u,v}∈E

1
deg(v)

I v is a neighbor of u of smallest degree

Heuristics for Matchings in Random Graphs

Introduction Algorithms Experiments Summary

Heuristic Reduction Steps

e

u

v

e

e

u

v

u

v

u

v
1
2 + 1

3

1
2 + 1

3

2 · 1
2 + 1

3
1
3 + 2 · 1

4

3 · 1
3 + 1

4

3 · 1
4

3 · 1
3 + 1

4

2 · 1
3 + 2 · 1

4 3 · 1
4

Choose an edge e = {u, v} to put in the matching and shrink the
graph.
HEU(rand) : I e is randomly chosen

HEU(deg,deg) :

I u is a node of smallest degree
I v is a neighbor of u of smallest degree

HEU(pot,deg) :

I u is a node of smallest potential π(u), where

π(u) :=
∑

{u,v}∈E

1
deg(v)

I v is a neighbor of u of smallest degree

Heuristics for Matchings in Random Graphs

Introduction Algorithms Experiments Summary

Heuristic Reduction Steps

e

u

v

e

e

u

v

u

v

u

v
1
2 + 1

3

1
2 + 1

3

2 · 1
2 + 1

3
1
3 + 2 · 1

4

3 · 1
3 + 1

4

3 · 1
4

3 · 1
3 + 1

4

2 · 1
3 + 2 · 1

4 3 · 1
4

Choose an edge e = {u, v} to put in the matching and shrink the
graph.
HEU(rand) : I e is randomly chosen

HEU(deg,deg) :

I u is a node of smallest degree
I v is a neighbor of u of smallest degree

HEU(pot,deg) :

I u is a node of smallest potential π(u), where

π(u) :=
∑

{u,v}∈E

1
deg(v)

I v is a neighbor of u of smallest degree

Heuristics for Matchings in Random Graphs

Introduction Algorithms Experiments Summary

Heuristic Reduction Steps

e

u

v

e

e

u

v

u

v

u

v
1
2 + 1

3

1
2 + 1

3

2 · 1
2 + 1

3
1
3 + 2 · 1

4

3 · 1
3 + 1

4

3 · 1
4

3 · 1
3 + 1

4

2 · 1
3 + 2 · 1

4 3 · 1
4

Choose an edge e = {u, v} to put in the matching and shrink the
graph.
HEU(rand) : I e is randomly chosen
HEU(deg,deg) :

I u is a node of smallest degree
I v is a neighbor of u of smallest degree

HEU(pot,deg) :

I u is a node of smallest potential π(u), where

π(u) :=
∑

{u,v}∈E

1
deg(v)

I v is a neighbor of u of smallest degree

Heuristics for Matchings in Random Graphs

Introduction Algorithms Experiments Summary

Heuristic Reduction Steps

e

u

v

e

e

u

v

u

v

u

v
1
2 + 1

3

1
2 + 1

3

2 · 1
2 + 1

3
1
3 + 2 · 1

4

3 · 1
3 + 1

4

3 · 1
4

3 · 1
3 + 1

4

2 · 1
3 + 2 · 1

4 3 · 1
4

Choose an edge e = {u, v} to put in the matching and shrink the
graph.
HEU(rand) : I e is randomly chosen
HEU(deg,deg) :I u is a node of smallest degree

I v is a neighbor of u of smallest degree
HEU(pot,deg) :

I u is a node of smallest potential π(u), where

π(u) :=
∑

{u,v}∈E

1
deg(v)

I v is a neighbor of u of smallest degree

Heuristics for Matchings in Random Graphs

Introduction Algorithms Experiments Summary

Heuristic Reduction Steps

e

u

v

e

e

u

v

u

v

u

v
1
2 + 1

3

1
2 + 1

3

2 · 1
2 + 1

3
1
3 + 2 · 1

4

3 · 1
3 + 1

4

3 · 1
4

3 · 1
3 + 1

4

2 · 1
3 + 2 · 1

4 3 · 1
4

Choose an edge e = {u, v} to put in the matching and shrink the
graph.
HEU(rand) : I e is randomly chosen
HEU(deg,deg) :I u is a node of smallest degree

I v is a neighbor of u of smallest degree

HEU(pot,deg) :

I u is a node of smallest potential π(u), where

π(u) :=
∑

{u,v}∈E

1
deg(v)

I v is a neighbor of u of smallest degree

Heuristics for Matchings in Random Graphs

Introduction Algorithms Experiments Summary

Heuristic Reduction Steps

e

u

v

e

e

u

v

u

v

u

v
1
2 + 1

3

1
2 + 1

3

2 · 1
2 + 1

3
1
3 + 2 · 1

4

3 · 1
3 + 1

4

3 · 1
4

3 · 1
3 + 1

4

2 · 1
3 + 2 · 1

4 3 · 1
4

Choose an edge e = {u, v} to put in the matching and shrink the
graph.
HEU(rand) : I e is randomly chosen
HEU(deg,deg) :I u is a node of smallest degree

I v is a neighbor of u of smallest degree

HEU(pot,deg) :

I u is a node of smallest potential π(u), where

π(u) :=
∑

{u,v}∈E

1
deg(v)

I v is a neighbor of u of smallest degree

Heuristics for Matchings in Random Graphs

Introduction Algorithms Experiments Summary

Heuristic Reduction Steps

e

u

v

e

e

u

v

u

v

u

v
1
2 + 1

3

1
2 + 1

3

2 · 1
2 + 1

3
1
3 + 2 · 1

4

3 · 1
3 + 1

4

3 · 1
4

3 · 1
3 + 1

4

2 · 1
3 + 2 · 1

4 3 · 1
4

Choose an edge e = {u, v} to put in the matching and shrink the
graph.
HEU(rand) : I e is randomly chosen
HEU(deg,deg) :I u is a node of smallest degree

I v is a neighbor of u of smallest degree

HEU(pot,deg) :

I u is a node of smallest potential π(u), where

π(u) :=
∑

{u,v}∈E

1
deg(v)

I v is a neighbor of u of smallest degree

Heuristics for Matchings in Random Graphs

Introduction Algorithms Experiments Summary

Heuristic Reduction Steps

e

u

v

e

e

u

v

u

v

u

v
1
2 + 1

3

1
2 + 1

3

2 · 1
2 + 1

3
1
3 + 2 · 1

4

3 · 1
3 + 1

4

3 · 1
4

3 · 1
3 + 1

4

2 · 1
3 + 2 · 1

4 3 · 1
4

Choose an edge e = {u, v} to put in the matching and shrink the
graph.
HEU(rand) : I e is randomly chosen
HEU(deg,deg) :I u is a node of smallest degree

I v is a neighbor of u of smallest degree
HEU(pot,deg) :

I u is a node of smallest potential π(u), where

π(u) :=
∑

{u,v}∈E

1
deg(v)

I v is a neighbor of u of smallest degree

Heuristics for Matchings in Random Graphs

Introduction Algorithms Experiments Summary

Heuristic Reduction Steps

e

u

v

e

e

u

v

u

v

u

v

1
2 + 1

3

1
2 + 1

3

2 · 1
2 + 1

3
1
3 + 2 · 1

4

3 · 1
3 + 1

4

3 · 1
4

3 · 1
3 + 1

4

2 · 1
3 + 2 · 1

4 3 · 1
4

Choose an edge e = {u, v} to put in the matching and shrink the
graph.
HEU(rand) : I e is randomly chosen
HEU(deg,deg) :I u is a node of smallest degree

I v is a neighbor of u of smallest degree
HEU(pot,deg) :I u is a node of smallest potential π(u), where

π(u) :=
∑

{u,v}∈E

1
deg(v)

I v is a neighbor of u of smallest degree

Heuristics for Matchings in Random Graphs

Introduction Algorithms Experiments Summary

Heuristic Reduction Steps

e

u

v

e

e

u

v

u

v

u

v

1
2 + 1

3

1
2 + 1

3

2 · 1
2 + 1

3
1
3 + 2 · 1

4

3 · 1
3 + 1

4

3 · 1
4

3 · 1
3 + 1

4

2 · 1
3 + 2 · 1

4 3 · 1
4

Choose an edge e = {u, v} to put in the matching and shrink the
graph.
HEU(rand) : I e is randomly chosen
HEU(deg,deg) :I u is a node of smallest degree

I v is a neighbor of u of smallest degree
HEU(pot,deg) :I u is a node of smallest potential π(u), where

π(u) :=
∑

{u,v}∈E

1
deg(v)

I v is a neighbor of u of smallest degree
Heuristics for Matchings in Random Graphs

Introduction Algorithms Experiments Summary

Greedy Heuristics

“random edge”:
I OPT(1):HEU(rand) — Karp-Sipser heuristic [Karp and Sipser, 1981]

I OPT(1,2):HEU(rand)

“double minimum degree”:
I OPT(1):HEU(deg,deg)

I OPT(1,2):HEU(deg,deg) — heuristic with highest quality of
solution from [Magun, 1998]

“minimum potential, minimum degree”:
new algorithms — adaptation of selfless algorithm by [Sanders, 2004]

I OPT(1):HEU(pot,deg)

I OPT(1,2):HEU(pot,deg) — heuristic that probably has no critical
region

Heuristics for Matchings in Random Graphs

Introduction Algorithms Experiments Summary

Greedy Heuristics

“random edge”:
I OPT(1):HEU(rand) — Karp-Sipser heuristic [Karp and Sipser, 1981]

I OPT(1,2):HEU(rand)

“double minimum degree”:
I OPT(1):HEU(deg,deg)

I OPT(1,2):HEU(deg,deg) — heuristic with highest quality of
solution from [Magun, 1998]

“minimum potential, minimum degree”:
new algorithms — adaptation of selfless algorithm by [Sanders, 2004]

I OPT(1):HEU(pot,deg)

I OPT(1,2):HEU(pot,deg) — heuristic that probably has no critical
region

Heuristics for Matchings in Random Graphs

Introduction Algorithms Experiments Summary

Greedy Heuristics

“random edge”:
I OPT(1):HEU(rand) — Karp-Sipser heuristic [Karp and Sipser, 1981]

I OPT(1,2):HEU(rand)

“double minimum degree”:
I OPT(1):HEU(deg,deg)

I OPT(1,2):HEU(deg,deg) — heuristic with highest quality of
solution from [Magun, 1998]

“minimum potential, minimum degree”:
new algorithms — adaptation of selfless algorithm by [Sanders, 2004]

I OPT(1):HEU(pot,deg)

I OPT(1,2):HEU(pot,deg) — heuristic that probably has no critical
region

Heuristics for Matchings in Random Graphs

Introduction Algorithms Experiments Summary

Experimental Setup

graphs:

I random graphs G (n; c) with n nodes and edge probability
p = c/(n − 1)

I n = 106, c ∈ [1, 10], step size 0.1

For results regarding graphs with fewer nodes and random bipar-
tite graphs — see paper and the full version on arXiv.

measurements:
λ: failure rate —

fraction of graphs where
matching found is not a
maximum matching

ρ: number of lost edges —
average number of edges
missing from maximum
matching if failure occurs

t̄: avg. running time

#o1: avg. fraction of OPT(1) steps
#o2: avg. fraction of OPT(2) steps
#h: avg. fraction of HEU(?) steps

Heuristics for Matchings in Random Graphs

Introduction Algorithms Experiments Summary

Experimental Setup

graphs:
I random graphs G (n; c) with n nodes and edge probability

p = c/(n − 1)
I n = 106, c ∈ [1, 10], step size 0.1

For results regarding graphs with fewer nodes and random bipar-
tite graphs — see paper and the full version on arXiv.

measurements:
λ: failure rate —

fraction of graphs where
matching found is not a
maximum matching

ρ: number of lost edges —
average number of edges
missing from maximum
matching if failure occurs

t̄: avg. running time

#o1: avg. fraction of OPT(1) steps
#o2: avg. fraction of OPT(2) steps
#h: avg. fraction of HEU(?) steps

Heuristics for Matchings in Random Graphs

Introduction Algorithms Experiments Summary

Experimental Setup

graphs:
I random graphs G (n; c) with n nodes and edge probability

p = c/(n − 1)
I n = 106, c ∈ [1, 10], step size 0.1

For results regarding graphs with fewer nodes and random bipar-
tite graphs — see paper and the full version on arXiv.

measurements:
λ: failure rate —

fraction of graphs where
matching found is not a
maximum matching

ρ: number of lost edges —
average number of edges
missing from maximum
matching if failure occurs

t̄: avg. running time

#o1: avg. fraction of OPT(1) steps
#o2: avg. fraction of OPT(2) steps
#h: avg. fraction of HEU(?) steps

Heuristics for Matchings in Random Graphs

Introduction Algorithms Experiments Summary

Experimental Setup

graphs:
I random graphs G (n; c) with n nodes and edge probability

p = c/(n − 1)
I n = 106, c ∈ [1, 10], step size 0.1

For results regarding graphs with fewer nodes and random bipar-
tite graphs — see paper and the full version on arXiv.

measurements:
λ: failure rate —

fraction of graphs where
matching found is not a
maximum matching

ρ: number of lost edges —
average number of edges
missing from maximum
matching if failure occurs

t̄: avg. running time

#o1: avg. fraction of OPT(1) steps
#o2: avg. fraction of OPT(2) steps
#h: avg. fraction of HEU(?) steps

Heuristics for Matchings in Random Graphs

Introduction Algorithms Experiments Summary

Experimental Setup

graphs:
I random graphs G (n; c) with n nodes and edge probability

p = c/(n − 1)
I n = 106, c ∈ [1, 10], step size 0.1

For results regarding graphs with fewer nodes and random bipar-
tite graphs — see paper and the full version on arXiv.

measurements:

λ: failure rate —
fraction of graphs where
matching found is not a
maximum matching

ρ: number of lost edges —
average number of edges
missing from maximum
matching if failure occurs

t̄: avg. running time

#o1: avg. fraction of OPT(1) steps
#o2: avg. fraction of OPT(2) steps
#h: avg. fraction of HEU(?) steps

Heuristics for Matchings in Random Graphs

Introduction Algorithms Experiments Summary

Experimental Setup

graphs:
I random graphs G (n; c) with n nodes and edge probability

p = c/(n − 1)
I n = 106, c ∈ [1, 10], step size 0.1

For results regarding graphs with fewer nodes and random bipar-
tite graphs — see paper and the full version on arXiv.

measurements:
λ: failure rate —

fraction of graphs where
matching found is not a
maximum matching

ρ: number of lost edges —
average number of edges
missing from maximum
matching if failure occurs

t̄: avg. running time

#o1: avg. fraction of OPT(1) steps
#o2: avg. fraction of OPT(2) steps
#h: avg. fraction of HEU(?) steps

Heuristics for Matchings in Random Graphs

Introduction Algorithms Experiments Summary

Experimental Setup

graphs:
I random graphs G (n; c) with n nodes and edge probability

p = c/(n − 1)
I n = 106, c ∈ [1, 10], step size 0.1

For results regarding graphs with fewer nodes and random bipar-
tite graphs — see paper and the full version on arXiv.

measurements:
λ: failure rate —

fraction of graphs where
matching found is not a
maximum matching

ρ: number of lost edges —
average number of edges
missing from maximum
matching if failure occurs

t̄: avg. running time

#o1: avg. fraction of OPT(1) steps
#o2: avg. fraction of OPT(2) steps
#h: avg. fraction of HEU(?) steps

Heuristics for Matchings in Random Graphs

Introduction Algorithms Experiments Summary

Experimental Setup

graphs:
I random graphs G (n; c) with n nodes and edge probability

p = c/(n − 1)
I n = 106, c ∈ [1, 10], step size 0.1

For results regarding graphs with fewer nodes and random bipar-
tite graphs — see paper and the full version on arXiv.

measurements:
λ: failure rate —

fraction of graphs where
matching found is not a
maximum matching

ρ: number of lost edges —
average number of edges
missing from maximum
matching if failure occurs

t̄: avg. running time

#o1: avg. fraction of OPT(1) steps
#o2: avg. fraction of OPT(2) steps
#h: avg. fraction of HEU(?) steps

Heuristics for Matchings in Random Graphs

Introduction Algorithms Experiments Summary

Experimental Setup

graphs:
I random graphs G (n; c) with n nodes and edge probability

p = c/(n − 1)
I n = 106, c ∈ [1, 10], step size 0.1

For results regarding graphs with fewer nodes and random bipar-
tite graphs — see paper and the full version on arXiv.

measurements:
λ: failure rate —

fraction of graphs where
matching found is not a
maximum matching

ρ: number of lost edges —
average number of edges
missing from maximum
matching if failure occurs

t̄: avg. running time

#o1: avg. fraction of OPT(1) steps
#o2: avg. fraction of OPT(2) steps
#h: avg. fraction of HEU(?) steps

Heuristics for Matchings in Random Graphs

Introduction Algorithms Experiments Summary

Failure Rate

n = 106

OPT(1):HEU(rand)
OPT(1,2):HEU(rand)
OPT(1):HEU(deg,deg)
OPT(1,2):HEU(deg,deg)
OPT(1):HEU(pot,deg)
OPT(1,2):HEU(pot,deg)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

1 2 3 4 5 6 7 8 9 10

λ
(a
m
on

g
10
0
ra
nd

om
gr
ap
hs
)

c

I For c ≤ 2.5 no failure occurred in any of the heuristics.
(well known behavior — almost only OPT(1) reductions)

I OPT(2) does not influence “begin of failure” much.
I Heuristics with OPT(1,2) outperform counterparts using OPT(1).
I critical region of 2.6 < c < 3.7 for OPT(1,2):HEU(deg,deg)

reproduced
OPT(1,2):HEU(pot,deg) fails only 3 times out of 9100.

Heuristics for Matchings in Random Graphs

Introduction Algorithms Experiments Summary

Failure Rate

n = 106

OPT(1):HEU(rand)
OPT(1,2):HEU(rand)
OPT(1):HEU(deg,deg)
OPT(1,2):HEU(deg,deg)
OPT(1):HEU(pot,deg)
OPT(1,2):HEU(pot,deg)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

1 2 3 4 5 6 7 8 9 10

λ
(a
m
on

g
10
0
ra
nd

om
gr
ap
hs
)

c

I For c ≤ 2.5 no failure occurred in any of the heuristics.
(well known behavior — almost only OPT(1) reductions)

I OPT(2) does not influence “begin of failure” much.
I Heuristics with OPT(1,2) outperform counterparts using OPT(1).
I critical region of 2.6 < c < 3.7 for OPT(1,2):HEU(deg,deg)

reproduced
OPT(1,2):HEU(pot,deg) fails only 3 times out of 9100.

Heuristics for Matchings in Random Graphs

Introduction Algorithms Experiments Summary

Failure Rate

n = 106

OPT(1):HEU(rand)
OPT(1,2):HEU(rand)
OPT(1):HEU(deg,deg)
OPT(1,2):HEU(deg,deg)
OPT(1):HEU(pot,deg)
OPT(1,2):HEU(pot,deg)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

1 2 3 4 5 6 7 8 9 10

λ
(a
m
on

g
10
0
ra
nd

om
gr
ap
hs
)

c

I For c ≤ 2.5 no failure occurred in any of the heuristics.
(well known behavior — almost only OPT(1) reductions)

I OPT(2) does not influence “begin of failure” much.

I Heuristics with OPT(1,2) outperform counterparts using OPT(1).
I critical region of 2.6 < c < 3.7 for OPT(1,2):HEU(deg,deg)

reproduced
OPT(1,2):HEU(pot,deg) fails only 3 times out of 9100.

Heuristics for Matchings in Random Graphs

Introduction Algorithms Experiments Summary

Failure Rate

n = 106

OPT(1):HEU(rand)
OPT(1,2):HEU(rand)
OPT(1):HEU(deg,deg)
OPT(1,2):HEU(deg,deg)
OPT(1):HEU(pot,deg)
OPT(1,2):HEU(pot,deg)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

1 2 3 4 5 6 7 8 9 10

λ
(a
m
on

g
10
0
ra
nd

om
gr
ap
hs
)

c

I For c ≤ 2.5 no failure occurred in any of the heuristics.
(well known behavior — almost only OPT(1) reductions)

I OPT(2) does not influence “begin of failure” much.
I Heuristics with OPT(1,2) outperform counterparts using OPT(1).

I critical region of 2.6 < c < 3.7 for OPT(1,2):HEU(deg,deg)
reproduced

OPT(1,2):HEU(pot,deg) fails only 3 times out of 9100.

Heuristics for Matchings in Random Graphs

Introduction Algorithms Experiments Summary

Failure Rate

n = 106

OPT(1):HEU(rand)
OPT(1,2):HEU(rand)
OPT(1):HEU(deg,deg)
OPT(1,2):HEU(deg,deg)
OPT(1):HEU(pot,deg)
OPT(1,2):HEU(pot,deg)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

1 2 3 4 5 6 7 8 9 10

λ
(a
m
on

g
10
0
ra
nd

om
gr
ap
hs
)

c

I For c ≤ 2.5 no failure occurred in any of the heuristics.
(well known behavior — almost only OPT(1) reductions)

I OPT(2) does not influence “begin of failure” much.
I Heuristics with OPT(1,2) outperform counterparts using OPT(1).
I critical region of 2.6 < c < 3.7 for OPT(1,2):HEU(deg,deg)

reproduced

OPT(1,2):HEU(pot,deg) fails only 3 times out of 9100.

Heuristics for Matchings in Random Graphs

Introduction Algorithms Experiments Summary

Failure Rate

n = 106

OPT(1):HEU(rand)
OPT(1,2):HEU(rand)
OPT(1):HEU(deg,deg)
OPT(1,2):HEU(deg,deg)
OPT(1):HEU(pot,deg)
OPT(1,2):HEU(pot,deg)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

1 2 3 4 5 6 7 8 9 10

λ
(a
m
on

g
10
0
ra
nd

om
gr
ap
hs
)

c

I For c ≤ 2.5 no failure occurred in any of the heuristics.
(well known behavior — almost only OPT(1) reductions)

I OPT(2) does not influence “begin of failure” much.
I Heuristics with OPT(1,2) outperform counterparts using OPT(1).
I critical region of 2.6 < c < 3.7 for OPT(1,2):HEU(deg,deg)

reproduced
OPT(1,2):HEU(pot,deg) fails only 3 times out of 9100.

Heuristics for Matchings in Random Graphs

Introduction Algorithms Experiments Summary

Number of Lost Edges

n = 106

OPT(1,2):HEU(rand)
OPT(1,2):HEU(deg,deg)
OPT(1,2):HEU(pot,deg)

0

2

4

6

8

10

12

1 2 3 4 5 6 7 8 9 10

ρ
(a
m
on

g
10
0
ra
nd

om
gr
ap
hs
)

c

I From c ≥ 2.7 number of lost edges for OPT(1,2):HEU(rand) is
smaller than n1/5 (and relatively stable).

I Outside its critical range OPT(1,2):HEU(deg,deg) loses mostly
zero or one edge.

OPT(1,2):HEU(pot,deg) loses one edge 3 times out of 9100.

Heuristics for Matchings in Random Graphs

Introduction Algorithms Experiments Summary

Number of Lost Edges

n = 106

OPT(1,2):HEU(rand)
OPT(1,2):HEU(deg,deg)
OPT(1,2):HEU(pot,deg)

0

2

4

6

8

10

12

1 2 3 4 5 6 7 8 9 10

ρ
(a
m
on

g
10
0
ra
nd

om
gr
ap
hs
)

c

I From c ≥ 2.7 number of lost edges for OPT(1,2):HEU(rand) is
smaller than n1/5 (and relatively stable).

I Outside its critical range OPT(1,2):HEU(deg,deg) loses mostly
zero or one edge.

OPT(1,2):HEU(pot,deg) loses one edge 3 times out of 9100.

Heuristics for Matchings in Random Graphs

Introduction Algorithms Experiments Summary

Number of Lost Edges

n = 106

OPT(1,2):HEU(rand)
OPT(1,2):HEU(deg,deg)
OPT(1,2):HEU(pot,deg)

0

2

4

6

8

10

12

1 2 3 4 5 6 7 8 9 10

ρ
(a
m
on

g
10
0
ra
nd

om
gr
ap
hs
)

c

I From c ≥ 2.7 number of lost edges for OPT(1,2):HEU(rand) is
smaller than n1/5 (and relatively stable).

I Outside its critical range OPT(1,2):HEU(deg,deg) loses mostly
zero or one edge.

OPT(1,2):HEU(pot,deg) loses one edge 3 times out of 9100.

Heuristics for Matchings in Random Graphs

Introduction Algorithms Experiments Summary

Number of Lost Edges

n = 106

OPT(1,2):HEU(rand)
OPT(1,2):HEU(deg,deg)
OPT(1,2):HEU(pot,deg)

0

2

4

6

8

10

12

1 2 3 4 5 6 7 8 9 10

ρ
(a
m
on

g
10
0
ra
nd

om
gr
ap
hs
)

c

I From c ≥ 2.7 number of lost edges for OPT(1,2):HEU(rand) is
smaller than n1/5 (and relatively stable).

I Outside its critical range OPT(1,2):HEU(deg,deg) loses mostly
zero or one edge.

OPT(1,2):HEU(pot,deg) loses one edge 3 times out of 9100.

Heuristics for Matchings in Random Graphs

Introduction Algorithms Experiments Summary

Running Time Behavior
n = 106

OPT(1,2):HEU(pot,deg)

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10

t̄
in

se
c
(a
m
on

g
10

ra
nd

om
gr
ap
hs
)

c

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10av
g
fr
ac

of
st
ep
s
(a
m
on

g
10

ra
nd

om
gr
ap
hs
)

c

#o1 #o2 #h

I 1 ≤ c ≤ 2.7: linear slope — almost only OPT(1) steps
I 2.7 < c < 6: non-linear slope — strong decrease of #o1,

non-linear increase of #o2 and linear increase of #h
I c ≥ 6: slightly non-linear slope — dominated by #h

Heuristics for Matchings in Random Graphs

Introduction Algorithms Experiments Summary

Running Time Behavior
n = 106

OPT(1,2):HEU(pot,deg)

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10

t̄
in

se
c
(a
m
on

g
10

ra
nd

om
gr
ap
hs
)

c

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10av
g
fr
ac

of
st
ep
s
(a
m
on

g
10

ra
nd

om
gr
ap
hs
)

c

#o1 #o2 #h

I 1 ≤ c ≤ 2.7: linear slope — almost only OPT(1) steps

I 2.7 < c < 6: non-linear slope — strong decrease of #o1,
non-linear increase of #o2 and linear increase of #h

I c ≥ 6: slightly non-linear slope — dominated by #h

Heuristics for Matchings in Random Graphs

Introduction Algorithms Experiments Summary

Running Time Behavior
n = 106

OPT(1,2):HEU(pot,deg)

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10

t̄
in

se
c
(a
m
on

g
10

ra
nd

om
gr
ap
hs
)

c

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10av
g
fr
ac

of
st
ep
s
(a
m
on

g
10

ra
nd

om
gr
ap
hs
)

c

#o1 #o2 #h

I 1 ≤ c ≤ 2.7: linear slope — almost only OPT(1) steps
I 2.7 < c < 6: non-linear slope — strong decrease of #o1,

non-linear increase of #o2 and linear increase of #h

I c ≥ 6: slightly non-linear slope — dominated by #h

Heuristics for Matchings in Random Graphs

Introduction Algorithms Experiments Summary

Running Time Behavior
n = 106

OPT(1,2):HEU(pot,deg)

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10

t̄
in

se
c
(a
m
on

g
10

ra
nd

om
gr
ap
hs
)

c

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10av
g
fr
ac

of
st
ep
s
(a
m
on

g
10

ra
nd

om
gr
ap
hs
)

c

#o1 #o2 #h

I 1 ≤ c ≤ 2.7: linear slope — almost only OPT(1) steps
I 2.7 < c < 6: non-linear slope — strong decrease of #o1,

non-linear increase of #o2 and linear increase of #h
I c ≥ 6: slightly non-linear slope — dominated by #h

Heuristics for Matchings in Random Graphs

Introduction Algorithms Experiments Summary

Running Time Behavior

exemplary comparison with exact algorithm:

t̄ in seconds (average among 10 random graphs), n = 106

c t̄(H) t̄(E)

t̄(E + i)

1

1.1 73.1 0.8

5

23.5 948.6 6.6

9

48.4 1216.5 8.3

H: OPT(1,2):HEU(pot,deg)

E : Edmonds’ algorithm from
Boost C++

+i : with initial matching from
OPT(1):HEU(rand)

OPT(2) and HEU(pot,deg) steps are slow!
(At least in our implementation.)

Heuristics for Matchings in Random Graphs

Introduction Algorithms Experiments Summary

Running Time Behavior

exemplary comparison with exact algorithm:

t̄ in seconds (average among 10 random graphs), n = 106

c t̄(H) t̄(E)

t̄(E + i)

1 1.1 73.1

0.8

5 23.5 948.6

6.6

9 48.4 1216.5

8.3

H: OPT(1,2):HEU(pot,deg)

E : Edmonds’ algorithm from
Boost C++

+i : with initial matching from
OPT(1):HEU(rand)

OPT(2) and HEU(pot,deg) steps are slow!
(At least in our implementation.)

Heuristics for Matchings in Random Graphs

Introduction Algorithms Experiments Summary

Running Time Behavior

exemplary comparison with exact algorithm:

t̄ in seconds (average among 10 random graphs), n = 106

c t̄(H) t̄(E) t̄(E + i)
1 1.1 73.1 0.8
5 23.5 948.6 6.6
9 48.4 1216.5 8.3

H: OPT(1,2):HEU(pot,deg)

E : Edmonds’ algorithm from
Boost C++

+i : with initial matching from
OPT(1):HEU(rand)

OPT(2) and HEU(pot,deg) steps are slow!
(At least in our implementation.)

Heuristics for Matchings in Random Graphs

Introduction Algorithms Experiments Summary

Running Time Behavior

exemplary comparison with exact algorithm:

t̄ in seconds (average among 10 random graphs), n = 106

c t̄(H) t̄(E) t̄(E + i)
1 1.1 73.1 0.8
5 23.5 948.6 6.6
9 48.4 1216.5 8.3

H: OPT(1,2):HEU(pot,deg)

E : Edmonds’ algorithm from
Boost C++

+i : with initial matching from
OPT(1):HEU(rand)

OPT(2) and HEU(pot,deg) steps are slow!
(At least in our implementation.)

Heuristics for Matchings in Random Graphs

Introduction Algorithms Experiments Summary

Conclusion

We proposed a new greedy heuristic for maximum cardinality
matchings on sparse random graphs. The algorithm showed a
very low failure rate in experiments.

More (detailed) experimental results can be found in the paper
or the full version on arXiv.

Future work:
I Prove that this behavior is to be expected.
I Improve the running time behavior.
I Study performance on other classes of sparse random graphs,

e.g., with no almost perfect matching [Bordenave et al., 2011].
I Apply “selfless approach” to other (harder) problems, like

graph coloring.

Heuristics for Matchings in Random Graphs

Introduction Algorithms Experiments Summary

Conclusion

We proposed a new greedy heuristic for maximum cardinality
matchings on sparse random graphs. The algorithm showed a
very low failure rate in experiments.

More (detailed) experimental results can be found in the paper
or the full version on arXiv.

Future work:
I Prove that this behavior is to be expected.
I Improve the running time behavior.
I Study performance on other classes of sparse random graphs,

e.g., with no almost perfect matching [Bordenave et al., 2011].
I Apply “selfless approach” to other (harder) problems, like

graph coloring.

Heuristics for Matchings in Random Graphs

Introduction Algorithms Experiments Summary

Conclusion

We proposed a new greedy heuristic for maximum cardinality
matchings on sparse random graphs. The algorithm showed a
very low failure rate in experiments.

More (detailed) experimental results can be found in the paper
or the full version on arXiv.

Future work:
I Prove that this behavior is to be expected.

I Improve the running time behavior.
I Study performance on other classes of sparse random graphs,

e.g., with no almost perfect matching [Bordenave et al., 2011].
I Apply “selfless approach” to other (harder) problems, like

graph coloring.

Heuristics for Matchings in Random Graphs

Introduction Algorithms Experiments Summary

Conclusion

We proposed a new greedy heuristic for maximum cardinality
matchings on sparse random graphs. The algorithm showed a
very low failure rate in experiments.

More (detailed) experimental results can be found in the paper
or the full version on arXiv.

Future work:
I Prove that this behavior is to be expected.
I Improve the running time behavior.

I Study performance on other classes of sparse random graphs,
e.g., with no almost perfect matching [Bordenave et al., 2011].

I Apply “selfless approach” to other (harder) problems, like
graph coloring.

Heuristics for Matchings in Random Graphs

Introduction Algorithms Experiments Summary

Conclusion

We proposed a new greedy heuristic for maximum cardinality
matchings on sparse random graphs. The algorithm showed a
very low failure rate in experiments.

More (detailed) experimental results can be found in the paper
or the full version on arXiv.

Future work:
I Prove that this behavior is to be expected.
I Improve the running time behavior.
I Study performance on other classes of sparse random graphs,

e.g., with no almost perfect matching [Bordenave et al., 2011].

I Apply “selfless approach” to other (harder) problems, like
graph coloring.

Heuristics for Matchings in Random Graphs

Introduction Algorithms Experiments Summary

Conclusion

We proposed a new greedy heuristic for maximum cardinality
matchings on sparse random graphs. The algorithm showed a
very low failure rate in experiments.

More (detailed) experimental results can be found in the paper
or the full version on arXiv.

Future work:
I Prove that this behavior is to be expected.
I Improve the running time behavior.
I Study performance on other classes of sparse random graphs,

e.g., with no almost perfect matching [Bordenave et al., 2011].
I Apply “selfless approach” to other (harder) problems, like

graph coloring.

Heuristics for Matchings in Random Graphs

Introduction Algorithms Experiments Summary

Thank you!

Heuristics for Matchings in Random Graphs

References (1)

Aronson, J., Frieze, A. M., and Pittel, B. (1998).
Maximum matchings in sparse random graphs: Karp-Sipser revisited.
Random Struct. Algorithms, 12(2):111–177.

Bast, H., Mehlhorn, K., Schäfer, G., and Tamaki, H. (2006).
Matching Algorithms Are Fast in Sparse Random Graphs.
Theory Comput. Syst., 39(1):3–14.

Bordenave, C., Lelarge, M., and Salez, J. (2011).
Matchings on infinite graphs.
CoRR, arXiv:1102.0712.

Chebolu, P., Frieze, A. M., and Melsted, P. (2010).
Finding a Maximum Matching in a Sparse Random Graph in O(n)
Expected Time.
J. ACM, 57(4).

Edmonds, J. (1965).
Paths, trees, and flowers.
Canadian Journal of Mathematics, 17:449–467.

Heuristics for Matchings in Random Graphs

References (2)

Karp, R. M. and Sipser, M. (1981).
Maximum Matchings in Sparse Random Graphs.
In Proc. 22nd FOCS, pages 364–375. IEEE Computer Society.

Magun, J. (1998).
Greedy Matching Algorithms: An Experimental Study.
ACM Journal of Experimental Algorithmics, 3:6.

Micali, S. and Vazirani, V. V. (1980).
An O(

√
|v | · |E |) Algorithm for Finding Maximum Matching in General

Graphs.
In Proc. 21st FOCS, pages 17–27. IEEE Computer Society.

Mucha, M. and Sankowski, P. (2004).
Maximum Matchings via Gaussian Elimination.
In Proc. 45th FOCS, pages 248–255. IEEE Computer Society.

Sanders, P. (2004).
Algorithms for Scalable Storage Servers.
In Proc. 30th SOFSEM, LNCS, pages 82–101. Springer.

Heuristics for Matchings in Random Graphs

	Introduction
	Algorithms
	Experiments
	Summary
	Appendix

