A More Reliable Greedy Heuristic for Maximum Matchings in Sparse Random Graphs

Martin Dietzfelbinger¹ Hendrik Peilke² <u>Michael Rink</u>¹

¹Technische Universität Ilmenau

²IBYKUS AG

Maximum Cardinality Matching

undirected graph G:

Maximum Cardinality Matching

undirected graph G:

▶ A matching M is set of pairwise disjoint edges from G.

Maximum Cardinality Matching

undirected graph G:

- \blacktriangleright A matching M is set of pairwise disjoint edges from G.
- ► *M* is a maximum matching if it has largest possible cardinality.

Maximum Cardinality Matching

undirected graph *G*:

- \blacktriangleright A matching M is set of pairwise disjoint edges from G.
- ► *M* is a maximum matching if it has largest possible cardinality.
- ► The problem of finding a maximum matching is well understood.

Algorithms for Maximum Matchings

(arbitrary) graph G = (V, E) with n nodes, m edges:

(arbitrary) graph G = (V, E) with n nodes, m edges:

▶ first polynomial time algorithm [Edmonds, 1965] $O(n^2 \cdot m)$

(arbitrary) graph G = (V, E) with n nodes, m edges:

- ▶ first polynomial time algorithm [Edmonds, 1965] $O(n^2 \cdot m)$
- ▶ many followed, e.g., [Micali and Vazirani, 1980] $O(n^{1/2} \cdot m)$

(arbitrary) graph G = (V, E) with n nodes, m edges:

- ▶ first polynomial time algorithm [Edmonds, 1965] $O(n^2 \cdot m)$
- ▶ many followed, e.g., [Micali and Vazirani, 1980] $O(n^{1/2} \cdot m)$
- ▶ for dense graphs $m = \Theta(n^2)$ improved to $O(n^{\omega})$ (expected), $\omega < 2.376$, by [Mucha and Sankowski, 2004]

(arbitrary) graph G = (V, E) with n nodes, m edges:

- ▶ first polynomial time algorithm [Edmonds, 1965] $O(n^2 \cdot m)$
- ▶ many followed, e.g., [Micali and Vazirani, 1980] $O(n^{1/2} \cdot m)$
- ▶ for dense graphs $m = \Theta(n^2)$ improved to $O(n^\omega)$ (expected), $\omega < 2.376$, by [Mucha and Sankowski, 2004]

random graph G(n; c) with n nodes, constant expected degree c:

(arbitrary) graph G = (V, E) with n nodes, m edges:

- ▶ first polynomial time algorithm [Edmonds, 1965] $O(n^2 \cdot m)$
- ▶ many followed, e.g., [Micali and Vazirani, 1980] $O(n^{1/2} \cdot m)$
- ▶ for dense graphs $m = \Theta(n^2)$ improved to $O(n^\omega)$ (expected), $\omega < 2.376$, by [Mucha and Sankowski, 2004]

random graph G(n; c) with n nodes, constant expected degree c:

- ▶ [Bast et al., 2006] showed that if c > 32.67 then maximum matching can be found in time $O(n \cdot \log n)$ (expected)
 - ightharpoonup conjectured that this holds for all constants c > 0

(arbitrary) graph G = (V, E) with n nodes, m edges:

- ▶ first polynomial time algorithm [Edmonds, 1965] $O(n^2 \cdot m)$
- ▶ many followed, e.g., [Micali and Vazirani, 1980] $O(n^{1/2} \cdot m)$
- ▶ for dense graphs $m = \Theta(n^2)$ improved to $O(n^\omega)$ (expected), $\omega < 2.376$, by [Mucha and Sankowski, 2004]

random graph G(n; c) with n nodes, constant expected degree c:

- ▶ [Bast et al., 2006] showed that if c > 32.67 then maximum matching can be found in time $O(n \cdot \log n)$ (expected)
 - ightharpoonup conjectured that this holds for all constants c>0
- ► [Chebolu et al., 2010] gave algorithm with running time O(n) (expected)

(arbitrary) graph G = (V, E) with n nodes, m edges:

- ▶ first polynomial time algorithm [Edmonds, 1965] $O(n^2 \cdot m)$
- ▶ many followed, e.g., [Micali and Vazirani, 1980] $O(n^{1/2} \cdot m)$
- ▶ for dense graphs $m = \Theta(n^2)$ improved to $O(n^\omega)$ (expected), $\omega < 2.376$, by [Mucha and Sankowski, 2004]

random graph G(n; c) with n nodes, constant expected degree c:

- ▶ [Bast et al., 2006] showed that if c > 32.67 then maximum matching can be found in time $O(n \cdot \log n)$ (expected)
 - ightharpoonup conjectured that this holds for all constants c>0
- ► [Chebolu et al., 2010] gave algorithm with running time O(n) (expected)

The (exact) algorithms remain complicated!

(arbitrary) graph G = (V, E) with n nodes, m edges:

- ▶ first polynomial time algorithm [Edmonds, 1965] $O(n^2 \cdot m)$
- ▶ many followed, e.g., [Micali and Vazirani, 1980] $O(n^{1/2} \cdot m)$
- for dense graphs $m = \Theta(n^2)$ improved to $O(n^\omega)$ (expected), $\omega < 2.376$, by [Mucha and Sankowski, 2004]

random graph G(n; c) with n nodes, constant expected degree c:

- ▶ [Bast et al., 2006] showed that if c > 32.67 then maximum matching can be found in time $O(n \cdot \log n)$ (expected)
 - lacktriangle conjectured that this holds for all constants c>0
- ► [Chebolu et al., 2010] gave algorithm with running time O(n) (expected)

The (exact) algorithms remain complicated!

What can be achieved with simpler algorithms?

Matching Heuristics for Sparse Random Graphs

greedy heuristics for G(n; c):

Matching Heuristics for Sparse Random Graphs

greedy heuristics for G(n; c):

- ► Karp-Sipser heuristic [Karp and Sipser, 1981, Aronson et al., 1998]
 - if $c < e \approx 2.718$ finds maximum matching (whp)
 - if $c>e\approx 2.718$ size of matching found is within $n^{1/5+o(1)}$ of maximum cardinality

Matching Heuristics for Sparse Random Graphs

greedy heuristics for G(n; c):

- ► Karp-Sipser heuristic [Karp and Sipser, 1981, Aronson et al., 1998]
 - if $c < e \approx 2.718$ finds maximum matching (whp)
 - if $c>e\approx 2.718$ size of matching found is within $n^{1/5+o(1)}$ of maximum cardinality
- experimental studies of several heuristics, e.g., [Magun, 1998]
 - ► There are good greedy heuristics with linear running time that are likely to find maximum matchings for a wide range of c.
 - ► Even the best heuristic often fails in the range of about 2.6 < c < 3.8.</p>

Matching Heuristics for Sparse Random Graphs

greedy heuristics for G(n; c):

- ► Karp-Sipser heuristic [Karp and Sipser, 1981, Aronson et al., 1998]
 - if $c < e \approx 2.718$ finds maximum matching (whp)
 - if $c>e\approx 2.718$ size of matching found is within $n^{1/5+o(1)}$ of maximum cardinality
- experimental studies of several heuristics, e.g., [Magun, 1998]
 - ► There are good greedy heuristics with linear running time that are likely to find maximum matchings for a wide range of *c*.
 - ▶ Even the best heuristic often fails in the range of about $2.6 \le c \le 3.8$.

There is some region for *c* that seems critical for known greedy matching heuristics!

Matching Heuristics for Sparse Random Graphs

greedy heuristics for G(n; c):

- ► Karp-Sipser heuristic [Karp and Sipser, 1981, Aronson et al., 1998]
 - if $c < e \approx 2.718$ finds maximum matching (whp)
 - if $c > e \approx 2.718$ size of matching found is within $n^{1/5+o(1)}$ of maximum cardinality
- experimental studies of several heuristics, e.g., [Magun, 1998]
 - ► There are good greedy heuristics with linear running time that are likely to find maximum matchings for a wide range of *c*.
 - ▶ Even the best heuristic often fails in the range of about $2.6 \le c \le 3.8$.

There is some region for *c* that seems critical for known greedy matching heuristics!

Is there a greedy heuristic with no critical region?

Result

We describe a new greedy heuristic with (close to) linear running time and give experimental evidence that this heuristic is likely to find a maximum matching in G(n;c) for all ranges of c.

Result

We describe a new greedy heuristic with (close to) linear running time and give experimental evidence that this heuristic is likely to find a maximum matching in G(n; c) for all ranges of c.

 Our approach is motivated by the "selfless algorithm" of [Sanders, 2004] for orienting undirected graphs.

Result

We describe a new greedy heuristic with (close to) linear running time and give experimental evidence that this heuristic is likely to find a maximum matching in G(n; c) for all ranges of c.

- Our approach is motivated by the "selfless algorithm" of [Sanders, 2004] for orienting undirected graphs.
- ► We compared (quality of solution) our new heuristic with several good heuristics commonly used.

Basic Structure

heuristics:

Basic Structure

heuristics:

- ► set of simple reduction steps with a strict order of priority
- ► reduction step: select an edge and shrink the graph

Basic Structure

heuristics:

- set of simple reduction steps with a strict order of priority
- reduction step: select an edge and shrink the graph

algorithm

```
while G has an edge select applicable reduction step with highest priority apply the reduction
```

Basic Structure

heuristics:

- set of simple reduction steps with a strict order of priority
- reduction step: select an edge and shrink the graph

algorithm

while *G* has an edge select applicable reduction step with highest priority apply the reduction

two kinds of reduction steps:

Basic Structure

heuristics:

- set of simple reduction steps with a strict order of priority
- reduction step: select an edge and shrink the graph

algorithm

while G has an edge select applicable reduction step with highest priority apply the reduction

two kinds of reduction steps:

OPT never decrease the size of a maximum matching [Karp and Sipser, 1981]

HEU can decrease the size of a maximum matching

Optimal Reduction Steps

OPT(1)

 $\mathsf{OPT}(1)$ \blacktriangleright choose node u of degree 1

- OPT(1)
- ► choose node *u* of degree 1
 - incident edge $e = \{u, v\}$ belongs to matching

- OPT(1)
- ightharpoonup choose node u of degree 1
- ▶ incident edge $e = \{u, v\}$ belongs to matching
- ► shrink graph

- OPT(1)
- ► choose node *u* of degree 1
- ▶ incident edge $e = \{u, v\}$ belongs to matching
- ► shrink graph

- OPT(1)
- ► choose node *u* of degree 1
- ▶ incident edge $e = \{u, v\}$ belongs to matching
- ► shrink graph
- OPT(2)

- OPT(1)
- ► choose node *u* of degree 1
 - ▶ incident edge $e = \{u, v\}$ belongs to matching
 - ► shrink graph
- OPT(2)
 - \blacktriangleright choose node u of degree 2, adjacent to v_1 and v_2

- OPT(1)
- ► choose node *u* of degree 1
- ▶ incident edge $e = \{u, v\}$ belongs to matching
- ► shrink graph
- OPT(2)
- \blacktriangleright choose node u of degree 2, adjacent to v_1 and v_2
- ► contract nodes into a single node v

- OPT(1) ▶
 - ► choose node *u* of degree 1
 - incident edge $e = \{u, v\}$ belongs to matching
 - ► shrink graph
- OPT(2)
- \blacktriangleright choose node u of degree 2, adjacent to v_1 and v_2
- ► contract nodes into a single node *v*

- $\mathsf{OPT}(1)$ \blacktriangleright choose node u of degree 1
 - ▶ incident edge $e = \{u, v\}$ belongs to matching
 - shrink graph
- **OPT(2)** \blacktriangleright choose node u of degree 2, adjacent to v_1 and v_2
 - contract nodes into a single node v
 - if $\{v, w\}$ becomes matching edge, by recursion,

- OPT(1)
- ► choose node *u* of degree 1
- ▶ incident edge $e = \{u, v\}$ belongs to matching
- shrink graph
- OPT(2)
- \blacktriangleright choose node u of degree 2, adjacent to v_1 and v_2
- contract nodes into a single node v
- ▶ if $\{v, w\}$ becomes matching edge, by recursion, replace $\{v, w\}$ with $\{v_1, w\}$ and add $\{u, v_2\}$

- $\mathsf{OPT}(1)$ \blacktriangleright choose node u of degree 1
 - ▶ incident edge $e = \{u, v\}$ belongs to matching
 - shrink graph
- **OPT(2)** \blacktriangleright choose node u of degree 2, adjacent to v_1 and v_2
 - contract nodes into a single node v
 - ▶ if $\{v, w\}$ becomes matching edge, by recursion, replace $\{v, w\}$ with $\{v_1, w\}$ and add $\{u, v_2\}$, or replace $\{v, w\}$ with $\{v_2, w\}$ and add $\{u, v_1\}$

Choose an edge $e = \{u, v\}$ to put in the matching and shrink the graph.

Choose an edge $e = \{u, v\}$ to put in the matching and shrink the graph.

HEU(rand)

Choose an edge $e = \{u, v\}$ to put in the matching and shrink the graph.

HEU(rand) ▶ *e* is randomly chosen

Choose an edge $e = \{u, v\}$ to put in the matching and shrink the graph.

HEU(rand) ▶ *e* is randomly chosen

Choose an edge $e = \{u, v\}$ to put in the matching and shrink the graph.

HEU(rand) ▶ *e* is randomly chosen

Choose an edge $e = \{u, v\}$ to put in the matching and shrink the graph.

HEU(rand) ▶ *e* is randomly chosen **HEU(deg,deg)**

Choose an edge $e = \{u, v\}$ to put in the matching and shrink the graph.

HEU(rand) ► *e* is randomly chosen

 $HEU(deg,deg) \triangleright u$ is a node of smallest degree

Choose an edge $e = \{u, v\}$ to put in the matching and shrink the graph.

HEU(rand) ► *e* is randomly chosen

 $HEU(deg, deg) \triangleright u$ is a node of smallest degree

 \triangleright v is a neighbor of u of smallest degree

Choose an edge $e = \{u, v\}$ to put in the matching and shrink the graph.

- **HEU(rand)** ▶ *e* is randomly chosen
- $HEU(deg, deg) \triangleright u$ is a node of smallest degree
 - \triangleright v is a neighbor of u of smallest degree

Choose an edge $e = \{u, v\}$ to put in the matching and shrink the graph.

HEU(rand) ▶ *e* is randomly chosen

 $\mathsf{HEU}(\mathsf{deg},\mathsf{deg})$ \triangleright u is a node of smallest degree

 \triangleright v is a neighbor of u of smallest degree

Choose an edge $e = \{u, v\}$ to put in the matching and shrink the graph.

HEU(rand) ▶ *e* is randomly chosen

HEU(deg,deg) $\triangleright u$ is a node of smallest degree

 \triangleright v is a neighbor of u of smallest degree

HEU(pot,deg)

Choose an edge $e = \{u, v\}$ to put in the matching and shrink the graph.

HEU(rand) ▶ *e* is randomly chosen

HEU(deg,deg) $\triangleright u$ is a node of smallest degree

 \triangleright v is a neighbor of u of smallest degree

HEU(pot,deg) \triangleright *u* is a node of smallest potential $\pi(u)$, where

$$\pi(u) \coloneqq \sum_{\{u,v\} \in E} \frac{1}{\deg(v)}$$

Choose an edge $e = \{u, v\}$ to put in the matching and shrink the graph.

HEU(rand) ▶ *e* is randomly chosen

HEU(deg,deg) $\triangleright u$ is a node of smallest degree

 \triangleright v is a neighbor of u of smallest degree

HEU(pot,deg) \triangleright *u* is a node of smallest potential $\pi(u)$, where

$$\pi(u) \coloneqq \sum_{\{u,v\} \in E} \frac{1}{\deg(v)}$$

 \triangleright v is a neighbor of u of smallest degree

Greedy Heuristics

"random edge":

- ► OPT(1):HEU(rand) Karp-Sipser heuristic [Karp and Sipser, 1981]
- ► OPT(1,2):HEU(rand)

Greedy Heuristics

"random edge":

- ► OPT(1):HEU(rand) Karp-Sipser heuristic [Karp and Sipser, 1981]
- ► OPT(1,2):HEU(rand)

"double minimum degree":

- ► OPT(1):HEU(deg,deg)
- ► OPT(1,2):HEU(deg,deg) heuristic with highest quality of solution from [Magun, 1998]

Greedy Heuristics

"random edge":

- ► OPT(1):HEU(rand) Karp-Sipser heuristic [Karp and Sipser, 1981]
- ► OPT(1,2):HEU(rand)

"double minimum degree":

- ► OPT(1):HEU(deg,deg)
- ► OPT(1,2):HEU(deg,deg) heuristic with highest quality of solution from [Magun, 1998]

"minimum potential, minimum degree":

new algorithms — adaptation of selfless algorithm by [Sanders, 2004]

- ► OPT(1):HEU(pot,deg)
- ► OPT(1,2):HEU(pot,deg) heuristic that probably has no critical region

roduction Algorithms Experiments Summar

Experimental Setup

graphs:

graphs:

- ▶ random graphs G(n; c) with n nodes and edge probability p = c/(n-1)
- ▶ $n = 10^6$, $c \in [1, 10]$, step size 0.1

graphs:

- random graphs G(n; c) with n nodes and edge probability p = c/(n-1)
- ▶ $n = 10^6$, $c \in [1, 10]$, step size 0.1

For results regarding graphs with fewer nodes and random bipartite graphs — see paper and the full version on arXiv.

graphs:

- random graphs G(n; c) with n nodes and edge probability p = c/(n-1)
- ▶ $n = 10^6$, $c \in [1, 10]$, step size 0.1

For results regarding graphs with fewer nodes and random bipartite graphs — see paper and the full version on arXiv.

graphs:

- random graphs G(n; c) with n nodes and edge probability p = c/(n-1)
- ▶ $n = 10^6$, $c \in [1, 10]$, step size 0.1

For results regarding graphs with fewer nodes and random bipartite graphs — see paper and the full version on arXiv.

measurements:

graphs:

- random graphs G(n; c) with n nodes and edge probability p = c/(n-1)
- ▶ $n = 10^6$, $c \in [1, 10]$, step size 0.1

For results regarding graphs with fewer nodes and random bipartite graphs — see paper and the full version on arXiv.

measurements:

λ: failure rate fraction of graphs where matching found is not a maximum matching

graphs:

- random graphs G(n; c) with n nodes and edge probability p = c/(n-1)
- ▶ $n = 10^6$, $c \in [1, 10]$, step size 0.1

For results regarding graphs with fewer nodes and random bipartite graphs — see paper and the full version on arXiv.

measurements:

- λ: failure rate fraction of graphs where matching found is not a maximum matching
- ρ: number of lost edges average number of edges missing from maximum matching if failure occurs

graphs:

- random graphs G(n; c) with n nodes and edge probability p = c/(n-1)
- ▶ $n = 10^6$, $c \in [1, 10]$, step size 0.1

For results regarding graphs with fewer nodes and random bipartite graphs — see paper and the full version on arXiv.

measurements:

- λ: failure rate fraction of graphs where matching found is not a maximum matching
- ρ: number of lost edges average number of edges missing from maximum matching if failure occurs

 \bar{t} : avg. running time

graphs:

random graphs G(n; c) with n nodes and edge probability p = c/(n-1)

▶ $n = 10^6$, $c \in [1, 10]$, step size 0.1

For results regarding graphs with fewer nodes and random bipartite graphs — see paper and the full version on arXiv.

measurements:

λ: failure rate fraction of graphs where matching found is not a maximum matching

 ρ: number of lost edges average number of edges missing from maximum matching if failure occurs \bar{t} : avg. running time

 $\overline{\#o1}$: avg. fraction of OPT(1) steps $\overline{\#o2}$: avg. fraction of OPT(2) steps $\overline{\#h}$: avg. fraction of HEU(\star) steps

► For $c \le 2.5$ no failure occurred in any of the heuristics. (well known behavior — almost only **OPT(1)** reductions)

- ▶ For $c \le 2.5$ no failure occurred in any of the heuristics. (well known behavior almost only OPT(1) reductions)
- ► OPT(2) does not influence "begin of failure" much.

- For $c \le 2.5$ no failure occurred in any of the heuristics. (well known behavior almost only OPT(1) reductions)
- ► OPT(2) does not influence "begin of failure" much.
- ► Heuristics with OPT(1,2) outperform counterparts using OPT(1).

- ▶ For $c \le 2.5$ no failure occurred in any of the heuristics. (well known behavior almost only OPT(1) reductions)
- ► OPT(2) does not influence "begin of failure" much.
- ► Heuristics with OPT(1,2) outperform counterparts using OPT(1).
- ► critical region of 2.6 < *c* < 3.7 for OPT(1,2):HEU(deg,deg) reproduced

- ► For $c \le 2.5$ no failure occurred in any of the heuristics. (well known behavior almost only OPT(1) reductions)
- ▶ OPT(2) does not influence "begin of failure" much.
- ► Heuristics with OPT(1,2) outperform counterparts using OPT(1).
- ► critical region of 2.6 < c < 3.7 for OPT(1,2):HEU(deg,deg) reproduced

OPT(1,2):HEU(pot,deg) fails only 3 times out of 9100.

Number of Lost Edges

Number of Lost Edges

From $c \ge 2.7$ number of lost edges for OPT(1,2):HEU(rand) is smaller than $n^{1/5}$ (and relatively stable).

Number of Lost Edges

- From $c \ge 2.7$ number of lost edges for OPT(1,2):HEU(rand) is smaller than $n^{1/5}$ (and relatively stable).
- ► Outside its critical range OPT(1,2):HEU(deg,deg) loses mostly zero or one edge.

Number of Lost Edges

- From $c \ge 2.7$ number of lost edges for OPT(1,2):HEU(rand) is smaller than $n^{1/5}$ (and relatively stable).
- Outside its critical range OPT(1,2):HEU(deg,deg) loses mostly zero or one edge.

OPT(1,2):HEU(pot,deg) loses one edge 3 times out of 9100.

oduction Algorithms Experiments Summary

Running Time Behavior

roduction Algorithms Experiments Summary

Running Time Behavior

 $n = 10^6$

▶ $1 \le c \le 2.7$: linear slope — almost only **OPT(1)** steps

- ▶ $1 \le c \le 2.7$: linear slope almost only **OPT(1)** steps
- ▶ 2.7 < c < 6: non-linear slope strong decrease of $\overline{\#o1}$, non-linear increase of $\overline{\#o2}$ and linear increase of $\overline{\#h}$

- ▶ $1 \le c \le 2.7$: linear slope almost only **OPT(1)** steps
- ▶ 2.7 < c < 6: non-linear slope strong decrease of $\overline{\#o1}$, non-linear increase of $\overline{\#o2}$ and linear increase of $\overline{\#h}$
- ▶ $c \ge 6$: slightly non-linear slope dominated by $\overline{\#h}$

exemplary comparison with exact algorithm:

 $ar{t}$ in seconds (average among 10 random graphs), $n=10^6$

С	$\bar{t}(H)$	$\overline{t}(E)$	H: OPT(1,2):HEU(pot,deg)
1			E: Edmonds' algorithm from
5			Boost C++
a			

exemplary comparison with exact algorithm:

 $ar{t}$ in seconds (average among 10 random graphs), $n=10^6$

С	$\bar{t}(H)$	$\overline{t}(E)$	H: 0
1	1.1	73.1	 E: E
5	23.5	948.6	E
9	48.4	1216.5	

H: OPT(1,2):HEU(pot,deg)E: Edmonds' algorithm from

Boost C++

exemplary comparison with exact algorithm:

 $ar{t}$ in seconds (average among 10 random graphs), $n=10^6$

С	$\bar{t}(H)$	$\overline{t}(E)$	$\bar{t}(E+i)$
1	1.1	73.1	0.8
5	23.5	948.6	6.6
9	48.4	1216.5	8.3

Boost C++

+i: with initial matching from OPT(1):HEU(rand)

exemplary comparison with exact algorithm:

 $ar{t}$ in seconds (average among 10 random graphs), $n=10^6$

С	$\bar{t}(H)$	$\overline{t}(E)$	$\overline{t}(E+i)$	<pre>H: OPT(1,2):HEU(pot,deg)</pre>
1	1.1	73.1	0.8	E: Edmonds' algorithm from
5	23.5	948.6	6.6	Boost C++
9	48.4	1216.5	8.3	+i: with initial matching from
				OPT(1):HEU(rand)

OPT(2) and HEU(pot,deg) steps are slow!

(At least in our implementation.)

We proposed a new greedy heuristic for maximum cardinality matchings on sparse random graphs. The algorithm showed a very low failure rate in experiments.

We proposed a new greedy heuristic for maximum cardinality matchings on sparse random graphs. The algorithm showed a very low failure rate in experiments.

More (detailed) experimental results can be found in the paper or the full version on arXiv.

We proposed a new greedy heuristic for maximum cardinality matchings on sparse random graphs. The algorithm showed a very low failure rate in experiments.

More (detailed) experimental results can be found in the paper or the full version on arXiv.

Future work:

Prove that this behavior is to be expected.

We proposed a new greedy heuristic for maximum cardinality matchings on sparse random graphs. The algorithm showed a very low failure rate in experiments.

More (detailed) experimental results can be found in the paper or the full version on arXiv.

Future work:

- ▶ Prove that this behavior is to be expected.
- ► Improve the running time behavior.

We proposed a new greedy heuristic for maximum cardinality matchings on sparse random graphs. The algorithm showed a very low failure rate in experiments.

More (detailed) experimental results can be found in the paper or the full version on arXiv.

Future work:

- ▶ Prove that this behavior is to be expected.
- ► Improve the running time behavior.
- Study performance on other classes of sparse random graphs, e.g., with no almost perfect matching [Bordenave et al., 2011].

We proposed a new greedy heuristic for maximum cardinality matchings on sparse random graphs. The algorithm showed a very low failure rate in experiments.

More (detailed) experimental results can be found in the paper or the full version on arXiv.

Future work:

- ▶ Prove that this behavior is to be expected.
- ► Improve the running time behavior.
- ► Study performance on other classes of sparse random graphs, e.g., with no almost perfect matching [Bordenave et al., 2011].
- ► Apply "selfless approach" to other (harder) problems, like graph coloring.

Thank you!

References (1)

- Aronson, J., Frieze, A. M., and Pittel, B. (1998).

 Maximum matchings in sparse random graphs: Karp-Sipser revisited.

 Random Struct. Algorithms, 12(2):111–177.
- Bast, H., Mehlhorn, K., Schäfer, G., and Tamaki, H. (2006). Matching Algorithms Are Fast in Sparse Random Graphs. *Theory Comput. Syst.*, 39(1):3–14.
- Bordenave, C., Lelarge, M., and Salez, J. (2011). Matchings on infinite graphs. *CoRR*, arXiv:1102.0712.
- Chebolu, P., Frieze, A. M., and Melsted, P. (2010).

 Finding a Maximum Matching in a Sparse Random Graph in O(n)Expected Time.

 J. ACM, 57(4).
- Edmonds, J. (1965).
 Paths, trees, and flowers.
 Canadian Journal of Mathematics, 17:449–467.

References (2)

- Karp, R. M. and Sipser, M. (1981).
 Maximum Matchings in Sparse Random Graphs.
 In Proc. 22nd FOCS, pages 364–375. IEEE Computer Society.
- Magun, J. (1998).
 Greedy Matching Algorithms: An Experimental Study.

 ACM Journal of Experimental Algorithmics, 3:6.
- Micali, S. and Vazirani, V. V. (1980).

 An $O(\sqrt{|v|} \cdot |E|)$ Algorithm for Finding Maximum Matching in General Graphs.

 In *Proc. 21st FOCS*, pages 17–27. IEEE Computer Society.
- Mucha, M. and Sankowski, P. (2004).

 Maximum Matchings via Gaussian Elimination.

 In *Proc. 45th FOCS*, pages 248–255. IEEE Computer Society.
- Sanders, P. (2004).
 Algorithms for Scalable Storage Servers.
 In *Proc. 30th SOFSEM*, LNCS, pages 82–101. Springer.