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Introduction Algorithms Experiments Summary

Maximum Cardinality Matching

undirected graph G :

I A matching M is set of pairwise disjoint edges from G .
I M is a maximum matching if it has largest possible cardinality.
I The problem of finding a maximum matching is well

understood.

Heuristics for Matchings in Random Graphs



Introduction Algorithms Experiments Summary

Maximum Cardinality Matching

undirected graph G :
I A matching M is set of pairwise disjoint edges from G .

I M is a maximum matching if it has largest possible cardinality.
I The problem of finding a maximum matching is well

understood.

Heuristics for Matchings in Random Graphs



Introduction Algorithms Experiments Summary

Maximum Cardinality Matching

undirected graph G :
I A matching M is set of pairwise disjoint edges from G .
I M is a maximum matching if it has largest possible cardinality.

I The problem of finding a maximum matching is well
understood.

Heuristics for Matchings in Random Graphs



Introduction Algorithms Experiments Summary

Maximum Cardinality Matching

undirected graph G :
I A matching M is set of pairwise disjoint edges from G .
I M is a maximum matching if it has largest possible cardinality.
I The problem of finding a maximum matching is well

understood.

Heuristics for Matchings in Random Graphs



Introduction Algorithms Experiments Summary

Algorithms for Maximum Matchings

(arbitrary) graph G = (V ,E ) with n nodes, m edges:

I first polynomial time algorithm [Edmonds, 1965] O(n2 ·m)
I many followed, e.g., [Micali and Vazirani, 1980] O(n1/2 ·m)
I for dense graphs m = Θ(n2) improved to O(nω) (expected),
ω < 2.376, by [Mucha and Sankowski, 2004]

random graph G (n; c) with n nodes, constant expected degree c :
I [Bast et al., 2006] showed that if c > 32.67 then maximum

matching can be found in time O(n · log n) (expected)
I conjectured that this holds for all constants c > 0

I [Chebolu et al., 2010] gave algorithm with running time O(n)
(expected)

The (exact) algorithms remain complicated!

What can be achieved with simpler algorithms?
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Introduction Algorithms Experiments Summary

Matching Heuristics for Sparse Random Graphs

greedy heuristics for G (n; c):

I Karp-Sipser heuristic [Karp and Sipser, 1981, Aronson et al., 1998]
I if c < e ≈ 2.718 finds maximum matching (whp)
I if c > e ≈ 2.718 size of matching found is within n1/5+o(1) of

maximum cardinality
I experimental studies of several heuristics, e.g., [Magun, 1998]

I There are good greedy heuristics with linear running time that
are likely to find maximum matchings for a wide range of c .

I Even the best heuristic often fails in the range of about
2.6 ≤ c ≤ 3.8.

There is some region for c that seems critical for known greedy
matching heuristics!

Is there a greedy heuristic with no critical region?

Heuristics for Matchings in Random Graphs
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Introduction Algorithms Experiments Summary

Result

We describe a new greedy heuristic with (close to) linear running
time and give experimental evidence that this heuristic is likely to
find a maximum matching in G (n; c) for all ranges of c .

I Our approach is motivated by the “selfless algorithm” of
[Sanders, 2004] for orienting undirected graphs.

I We compared (quality of solution) our new heuristic with
several good heuristics commonly used.

Heuristics for Matchings in Random Graphs
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Introduction Algorithms Experiments Summary

Basic Structure

heuristics:

I set of simple reduction steps with a strict order of priority
I reduction step: select an edge and shrink the graph

algorithm

while G has an edge
select applicable reduction step with highest priority
apply the reduction

two kinds of reduction steps:
OPT never decrease the size of a maximum matching

[Karp and Sipser, 1981]
HEU can decrease the size of a maximum matching
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Optimal Reduction Steps

e

u

v

v1 v2

u

e

u

v u

v1 v2

vw v

OPT(1) :

I choose node u of degree 1
I incident edge e = {u, v} belongs to matching
I shrink graph

OPT(2) :

I choose node u of degree 2, adjacent to v1 and v2
I contract nodes into a single node v
I if {v ,w} becomes matching edge, by recursion,

replace {v ,w} with {v1,w} and add {u, v2}, or
replace {v ,w} with {v2,w} and add {u, v1}
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Heuristic Reduction Steps
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Choose an edge e = {u, v} to put in the matching and shrink the
graph.

HEU(rand) :

I e is randomly chosen

HEU(deg,deg) :

I u is a node of smallest degree
I v is a neighbor of u of smallest degree

HEU(pot,deg) :

I u is a node of smallest potential π(u), where

π(u) :=
∑

{u,v}∈E

1
deg(v)

I v is a neighbor of u of smallest degree
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Greedy Heuristics

“random edge”:
I OPT(1):HEU(rand) — Karp-Sipser heuristic [Karp and Sipser, 1981]

I OPT(1,2):HEU(rand)

“double minimum degree”:
I OPT(1):HEU(deg,deg)

I OPT(1,2):HEU(deg,deg) — heuristic with highest quality of
solution from [Magun, 1998]

“minimum potential, minimum degree”:
new algorithms — adaptation of selfless algorithm by [Sanders, 2004]

I OPT(1):HEU(pot,deg)

I OPT(1,2):HEU(pot,deg) — heuristic that probably has no critical
region
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Experimental Setup

graphs:

I random graphs G (n; c) with n nodes and edge probability
p = c/(n − 1)

I n = 106, c ∈ [1, 10], step size 0.1

For results regarding graphs with fewer nodes and random bipar-
tite graphs — see paper and the full version on arXiv.

measurements:
λ: failure rate —

fraction of graphs where
matching found is not a
maximum matching

ρ: number of lost edges —
average number of edges
missing from maximum
matching if failure occurs

t̄: avg. running time

#o1: avg. fraction of OPT(1) steps
#o2: avg. fraction of OPT(2) steps
#h: avg. fraction of HEU(?) steps
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Failure Rate

n = 106

OPT(1):HEU(rand)
OPT(1,2):HEU(rand)
OPT(1):HEU(deg,deg)
OPT(1,2):HEU(deg,deg)
OPT(1):HEU(pot,deg)
OPT(1,2):HEU(pot,deg)
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I For c ≤ 2.5 no failure occurred in any of the heuristics.
(well known behavior — almost only OPT(1) reductions )

I OPT(2) does not influence “begin of failure” much.
I Heuristics with OPT(1,2) outperform counterparts using OPT(1).
I critical region of 2.6 < c < 3.7 for OPT(1,2):HEU(deg,deg)

reproduced
OPT(1,2):HEU(pot,deg) fails only 3 times out of 9100.
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Number of Lost Edges
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I From c ≥ 2.7 number of lost edges for OPT(1,2):HEU(rand) is
smaller than n1/5 (and relatively stable).

I Outside its critical range OPT(1,2):HEU(deg,deg) loses mostly
zero or one edge.

OPT(1,2):HEU(pot,deg) loses one edge 3 times out of 9100.
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smaller than n1/5 (and relatively stable).

I Outside its critical range OPT(1,2):HEU(deg,deg) loses mostly
zero or one edge.

OPT(1,2):HEU(pot,deg) loses one edge 3 times out of 9100.
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Running Time Behavior
n = 106
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I 1 ≤ c ≤ 2.7: linear slope — almost only OPT(1) steps
I 2.7 < c < 6: non-linear slope — strong decrease of #o1,

non-linear increase of #o2 and linear increase of #h
I c ≥ 6: slightly non-linear slope — dominated by #h
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Running Time Behavior

exemplary comparison with exact algorithm:

t̄ in seconds (average among 10 random graphs), n = 106

c t̄(H) t̄(E )

t̄(E + i)

1

1.1 73.1 0.8

5

23.5 948.6 6.6

9

48.4 1216.5 8.3

H: OPT(1,2):HEU(pot,deg)

E : Edmonds’ algorithm from
Boost C++

+i : with initial matching from
OPT(1):HEU(rand)

OPT(2) and HEU(pot,deg) steps are slow!
(At least in our implementation.)
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Conclusion

We proposed a new greedy heuristic for maximum cardinality
matchings on sparse random graphs. The algorithm showed a
very low failure rate in experiments.

More (detailed) experimental results can be found in the paper
or the full version on arXiv.

Future work:
I Prove that this behavior is to be expected.
I Improve the running time behavior.
I Study performance on other classes of sparse random graphs,

e.g., with no almost perfect matching [Bordenave et al., 2011].
I Apply “selfless approach” to other (harder) problems, like

graph coloring.
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Thank you!
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