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A TIGHT LINEARIZATION AND AN ALGORITHM FOR
ZERO-ONE QUADRATIC PROGRAMMING PROBLEMS*

Se m i n a I pa pe r WARREN P. ADAMS anp HANIF D. EHERALI

Deparnmens of Markematical Seiemces, Clemnon Dimiversity, Clomson, Sourh Caroding 29631
Departrmens of frdusrein! Englacering and Operanions Research, Firginfa Polyiechmic Insiiivde
vt Srare Universiny, Slackeburg, Firginig 24061

ined rera-one g

. . Ths paper & comctrned with the solwtion of linsary o st
Adams g : Shera/l M t SCI 1 986- programening problems. Problems of thes kind srise in numserous coonomse, Beifion decson,
y g - - . and sirsege planning sitmiors; mcluding capiial bodgeting, facility locilsom, quadeatic
assgniment, medis selection, and dynamic sel covening. A mew Encariration techmique is
prmanied Tor this problem which s dessonsirated to vield & tighter contineoos or Enear

programening elanabem Ihl.u i aﬂ.l.'i&hlt Ihwi.h n.ihﬂ' methods, An implicin eametion
algorishm which uses Lagrangian r lers' culting planes, amd bocal caplorations i

n desigoed 50 explofl 1he srength of this Imaan.ur.nn Compuiations! expericnc: i provided ko
X E {O 1 } demesserale the selulnes of 1he propossd Enserizarion and algorithm.

(ZERCHOME QUADRATIC PROGRAMMING, LINEARLZATION TECHNHJUES, IMPLECTT
EMUMERATION, LAGEANGIAN BELAXATION, BENDERS' DECOMPOSITION)

1. Imrodwction
This paper is concerned with linearhy-constrained zero-one quadratic programming

. . '
M I I_ P reform u | a t | O n Vi a FO rtet S problems (QP). Problems of this stracture arise in numerous economis, fcility jocation,
and grategic planning situatons. These include. for example, the medin selection
. . . problem desribed by Zangwill (1965), the capital buedpeting problem considered by
In eq ua | Ities Laughhunn (1970} and by Pelerson and Laughhunn (1971), certain facility location
problems given in Vaish (1974), a multiiude of applications associated with quadratic
assignment problems (see Sheral 1979), and dynamic faclity refocation problems such
a5 the dynamic set covering problem formoulsted in Chrissis of ol (19TRL
Basically, the available solution procedures for Problem OF may be classified as
. attempting either 1o solve the problem directly or to transform Problem QF into an
w g < II] ln (a’; . 'CUE ) cquivalent lincar mixed-integer program, and then sofve the latter problem. The direct
] e ,] Y methods involve partitioning technigques or implicit enumeration strategies. Lazimy
{1982) considers a more general version of Problem QF, ie., a mixed-integer quadratic
programming problem, and demonstraies that one can transform this problem into an
equivalent program without adding new variables or constraints. This renders the
probilem more amenable to Geoffrion’s (1972) geaeralized Benders” technique, in that

w y > maX 0 'CU . _|_ a’; N 1 the cutting planes derived are Hnear in the integer variables Balas | [969) supgests an
]f p— b ] B alternative pastilioning algorithm for the same class of problems, but requires the
adddition of an extra sed of vaniabies. Both thess methods, however, are based on the
use of a Dorn (1960} type of duakity, and thersfore require appropinie convexity

assumptions in regard to the objective function. Another direcl-search cutting plans
algorithm is suggested by Kunzi and Oetili {1963) for all-inteper quadratic programming

t h e n CO ntl n u O u S re | axat I O n Dm_?]hrm;l;l-.rm implicit enumeration procedures developed for Problem QF are more

siraightforwand. These methods include the works of Cabot and Francis { 1970), Hansen
{1972}, Mao and Wallingfoed (1968), and McBride and Yormark {1980} Recently,
Carter {1984) has supgested methods for improving vanous direct-search schemes by

* gcveprad by Alesamder H. G Rimnooy Kan; reczlved July 1984 This paper wes with the muhoes 4
manths for | nevisios
L274
I 1A, A 10 TN 1. 25
Cogpright © 1982, The [eatints of Wasmpores St
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Adams & Sherali, Op. Res. 1990:

x € R™ x {0,1}™ with products
involving at least one binary
variable

MILP reformulation

Theorem 1. Problems MIQPP and MILPR (and,
hence, MILP) are equivalent in the following sense.
Given any (x, y) feasible to MIQPP, there exists
a (w, u) such that (x, y. w, u) is feasible to MILPR
with the same objective value. Conversely, given any
(x, y. w, 1) feasible 0 MILPR, the solution (x, v) is
feasible to MIQPP with the same objective value.

then continuous relaxation

LINEARIZATION STRATEGIES FOR A CLASS OF ZERO-ONE MIXED
INTEGER PROGRAMMING PROBLEMS

WARREN P. ADAMS

Clemvain Uiverriy, £ e

Sourk Carmlios

HANIF D. SHERALI
Verginte Pidwbocdosle: Jratetine anad Stave Dmiveruny: Slasstnrg, #Fipuna
(Reoornved Apnl 15984, sevsbos mocved Judy 1986, Annl 1968, socopted fanuary 1989}

I pager i cancerned with a new Unerisiion Mraegy far a class of zef—ome misnd inseper programesing prohloms
Ehian cosliing {uistratic croem-product Tens tween continwoss and hinary ristes, and beroeen 1he b i variables

thenmaclves, This limeaneation schenue provides sn cquisakene miscd intsger linmr programming prober wh

viekls s

tighter contisgous reliation than that olainable va the alernative Unsiviztios lechnagues avallable in e Fiermure.
Moreower, the praposad bechnique prinides o unifying famewors o the sense thal all Be afernae meshids lead 10

lermulatione thal ase accrssible through agpnapes

samogates ol the Condicanis oF the new linearasd [emmilason;

Extensioas 1 varioas other types of misat imsge nunlimear progransmies probloms are also diseesst

A commonly wed fechniges in the development
of sodution procedures for noalnear mieger angd
mixed infepes programming probleims is that of Hnear-
wration, that is, the conssruction of an eqinvalent lnear
(mixed) nteper  representation  of the  problem
Murmerous authors, inchmbing Giloser (1975), Glover
amd Woolsey (1973, 1974), Petersen (1971, Watters
{1967} and Zangwill {1965} lave suggested methods
for obitaining lnear reformutations of warious classes
af discrete moslinear programming problems, The
mezhods they propose appear o b seemingly unre-
Iated, and the success obtained via these methods is
highly dependent o the specific problem. Unforiu-
mately, no central or unifving theaey has bercinfors
been presenied.

A cruciad convern in the construction of a linear
{mixed) infeper representation of & nonliner minesd
Integrr PTOEFamming problem is lvow well the linear
formulation lends jieell’ Lo existing solution stategies,
As reported by many authoss, for example, Barara
and Sherali {1983, Geolfrion and Graves (1974),
Geoffrion and Mcfride (1979), Magnand and Waong
(1981} MeDansel and Devine (1977), Rardin and
Uinger (197460 and Williams {1974), an integer linear
Tormulation whose continuous, or linear program-
ming, relasation chsely approsimates the conves, hall
af feasible inkcger solutions in the sicinity of the
aplistium i computationally sdvaniagerus, Henoe, 2
linearization technique that provides a tighl linear

S

prisbic

COhperations Hoxsech
Wk, M 3, March - Apnl B

nur

programming relaxngion, while kecping the problem
computaticonally trciable, is highly desirahle

The purpose of this paper is 10 pasent a new
linenzatzon techmigue for a general class of nonlinear
miked lnteger programming probiems. This linear
aition wechiigue posesses two principle advanlages
First. it peovides o type of unifving theory for the
Yanous exislmg linearization srmicgics. Sooond. the
combinuous relaxation of this linearization theoret-
cally dominates those of vaher linearizations found in
the literature. Moreover, i the types of problems we
have solved thus far, the proposed linearization has
desmsonstruted a significant computational advartape.

Thas paper is organized as follews, Section | presents
and justifies the proposed lineanzation scheme, See-
tiwn 2 compares this Hncasization strmtegy with those
of Glover (1975); Glover and Woolsey (1973, 1974),
Peteesen (197 1), Watters {1967} and Zangwill { | 965)
demonstsating ehat these ahernate schemes are abl
abtinable theough appropriale sorrogates of @one
strints of the proposed linearized problem. Hence,
aul enly does the new linearization provide a Hghter
linear propramming relzsation, but it also provides a
uitifying framework whech ties together all these aller-
nate schemes. An example is then given o deman-
sirate  1hat e propoged  lincarimation  suctly
dorminades the other awailalle Hnearizstions with
PPt 1 Lhe conlinunus relaxation. The final section
extends these ke 10 some other, more gerecal, iypes

icatuests. Programmung: livear (efuraulatives ol saninear iMeger (ogiine Progsimmg, sieger. nonlitesr. missd infoger poopramming

(Lo S TR 1B L R R R T
1990 A yeratigns Rosearch Sty of Amora
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under special condition, LP
reformulation

A New Reformulation-Linearization Technique
for Bilinear Programming Problems®

HANIF I: SHERALI and AMINE ALAMEDDINE
Departmeerd of frdustriod snd Systemr Engireecing. Virginds Palvrochime fopinee aind Sk
Llniversicy, Blockshiarg, FA 24001-00F8, L5, 4

|Recemved: 14 Deoember 1990; aooupted: T ovember 16961

Abstract, This paper & concerned szl dhe development of an slpocithm [or geseral hilmesr
prigramming probloms. Sach problems find pumerous applications in eoomomics and A W0y
ocation Thears, omlinedr multi-commusdity setwork Bows, dynamsic assignment and prodoction, and
various Tisk management probicms, The prigoscd approach trevelops 3 pew Reformulation Eineariz-
tien Technaque |_RL|I for this problem, ond imbeds (v within o presaldy convergent branch-aml-
tanedl slporiaha. Thi mettod first reformmliles the problem by canstruming nos2t of aomnegalse
variable Escpors usliag the problem consteaists, end suitgbly miliiplies combinations of these facioms
wiLh the origimal problem constramts qu pencraic wdditionnl valid sonkoesr consiralngs. The resubimg
enlinear progrin is sabdegoomily linearized by defining a new set of vanisbles, one for goch nonliseas
term. This “RLT™ process vields & Bneer programming problem whose optimal value provides a tight
fser bownd on the oplimal valse fo the hilinesr programmang probsiem . Vassons implimentation
schemss snl comlrami peneralion procedares are investigsted for the purpess of fusther oghteni g
the rsulting Ineoizilion. The bower bound thes produced theor=tically dominates, and pracrically i
for tighter, tham that obrsned by wsing convex envelogas tves hyper-rectingles, Tn faci, for some
speial cawes, this process o sbown to viell un exact linesr peogrimming epresennlxn . For the
ussecinted branch-and-Besod algorihm. various sdinscshle branching schemes ore discussed, including
omz in which branching is performed by pastitiondng the intorvals for anly anc sci of variables 1 ap y,
whichever are tewer in namber. Competaional experence is provdel o demonstrate the viabilicy of
the algorithms, For & large mumbsr of test proshlems: from the Wteratore., the initial Sousding linecar
program beell wihves the underlying biliness programsning problem,

Koy words, Bilmear programssing, sonconvex programaning, glebsd eptimi zatbon, beaseh-smd -boumd,
relormuloson-bneartzatios echnigus,

1. Introduction

This paper is concerned with the solution of bilincar programming problems of
the farm

BLF Minimize Mz, v)=c'x + d'y + x'Gy (1.1}
subject to (x, ¥l EZ=1q[g, p). Dt Dy=h (1.2a)

.-1:.1.' I8 .!}_.:.' = |‘|: (128

L= N ) S S TR o M T - {1.3}

“This paper was presemied an the [T [TASA Wiakshep an Ciobal Optimization, Sepran (Huogary ),
Degtmber 214, 1990

Fowrnal of Cliobal Cnnmuzaven 10 370430, 1802,
1 1990 Kiluwer Academic Pubdishars, Priaed in the Nerferkendy
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x € R™ x {0,1}" specialized to
bilinear products involving one
continuous and one binary
variable
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then continuous relaxation

Mlache madinal Progeapaming 5% {1533) Ire-208 pen
Marth-Hidland

Mixed-integer bilinear programming problems

Warren P. Adams

Deparment o Mahemarical Sciewcer, Clemzon Liwiversity, Clemson, 5 USA

Hanif [. Sherah

Depariment o Indwririal and Syeems Enpiaveerirg, Vigging Polpiechnic Teehtule aed Steie Distverary,
Mlockeburg, VA, L'SA

Received 22 Jane 1957
Hevised manescnpt seceived 5 March 1992

I'iis paper addresses o class of probless Gelied mined-fnbeger bilinear programming probiems, These
prublems are idenrical 1o dhe well known bilinear programming problems wiik the excepnnn thar ane
sl 0l wariahles o restricied oo b binary valoed, and they arise in various produomion, location-sllootion,
anid dminibuicion application coneexis. We S identify some special cages af this prodlem which ane
relatively mare readily solvable, even though thelr coalimiais relaragions are #ill nancomves. For the
mire gemend case, we employ & lineacizalion fechmigue and design @ compossie Lagrongian relssaison
mmplicii cnemerbon.cutiing plane algoritbm. Exlemsive compoialinnal experience is provided po lest
the eifboucy of various algorichmic smiegies and the effecis of probiem data on the computational effon
of the proposed algorithm

Key waris:, Bilengar program, linessiarion, ooming pslanes, Logrargion reloxatios

1. Imtroduoctiom

In this paper we study a class of mathematical progrums referred (o @y mized-mieger
bilinear programming preflems (MIBLP), These problems may be stated as follows:

MIBLP: minimize[c'x+d'y+x'Cy: xe X, ve ¥, y binary} (113
where X and ¥ are nonempdy, bounded polyhedeal sets given respectively as
X= }.1.'; B } aux=b for k=1, .. Kx=10
i=1
and
Y=¥n Y. ¥;,
with

'!-'.=|j-r=ﬂ": Y Gy= g for = r....,f_},
=1

Correigiwdvacy' to; Frof. Warren P. Adams, Depaniment of Mothematical Sciences, Clemson Uiniversiy,
Manin Hall, Clemsoa, 5C 29634- 1907, LSA
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DISCRETE

Introduction APPLIED

MATHEMATICS
. ELSEVIER Drizgzree Applid Mlathematies 51 41004 53106 _—
Reformulation- X € R {O 1 }n2

Linearization ?

. A hierarchy of relaxations and convex hull characterizations
Technique

for mixed-integer zero-one programming problems

RLT literature Convex hull of MILP feasible Hani . Shet, Wareen 2 Adur

. “Doparament of Ml el S Espoeerng. Fiegmie Padoeoiee Serast owd Srae Uiy
review Blacksburg, Pl 50800 1. LS4

The first paper region obtained through hierarchy B e e

fRevemren] H1 Onlodmy 1957, ievpun) 18 Aegusl (963

Mixed products of RLT constraints —

Relaxation of Alstract
blllnear terms This paper = concerped with the gemeraiion of tghi equivalent represeniations for moved-
Mixed prOd ucts imieger :}.?:v:l o grngu.mn::in,g grmlul:m For ihe L'.m:u.r case, we propose iechinique which
L | R L I . I lizst comveris the problem imlo a nonlinear, polynomial mixed-integer xero-one problem by
again eve . et multiplying the constraints wilh some suidable gdhdegmoo polynomesl Tactars envolving 1he
n benary varables, for any grvemad & |, ., n | aexd suhdijusndly bnearisis the resalbing prohlem

Relaxation C 1 n W i t h I:-ru:.!ml' Apprapaikle l.'.urli;utl'lrllr;\"!d.r:.-.qm[llr:ll; A d warees [Fam .Hcl:u ||:I.'l_ W ::::Iull'l B hlt::rlcrh:rr

. ; ; of refaxatians apamning (rom e ordineey knear programming relaxarion to che convex bul o

D hlera rChy 1 ) 2 f— 2 2 fewsible solufions. The feceis of the convex Rull of feasible salutions m terms of the orginal
prohizm varinbles are nvadahie through 2 sandord projection operation. We zlso sugges! an

EtC. ’ l I ’ —_— d a n d alternoce scheme fior appiymg thes technaque which gives & similar hicrarchy of reldualions. bt
1 2 imvahing fewer “complicating” constrainls. Techmigoes for bghbesing mbermediate lovel rekas-

utioms, amd insighls and merprotallons silkhin & dsjunc programing romework ane ala

Red Uced RLT ptsiled. The methadaloey radily exteods o multdinesr mdved-intesee 2ero—one palvnomial

pragramimiing prabkems in which the continamas variabies gppear lnearly in the prnnl:m

RRLT literature Koy wiwals, Mounbiniegen weosane prodilens, Tigha celosations, Comvey hudl iepreseniinns,
revieW Fd ( J]_ , J2) p— x] ( ]_ —_ x] ) ; Facetial mequalities. Disjunoiive programming

New developments jed1 jeJo

L Introduction

Why bother? Racenuly, Sherall and Adams [7] have propoed o new techospue for generaing

o Bierarchy of relagations for linear and polymomial seco—one programming prob-

Thank you multiply RLT-(d — 1) CONSEraints i e o srrum e e oo e e e et

represeniation. The prisent paper provides an extension of this approach 1o the
by all Fy(J1,.J2) the linearize to
obtain RLT-d

QRS- B S0T00 ) e — Flevier Suence BY. AT nghts reserved
SSE OTRE-21EXN (D200 F0- W
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...and many morel!
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Consider mixed-integer QCQP subject to linear equality
constraints Ax = b (A has full rank)

: )
ey, €%+ xQux
Vi<i<qg cx+x@Q;x < 0 \
Ax = b
x € 2 nxtxY].

Z is a polyhedron
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Linearization

Technique AX = b —
RLT literature
review \V/g S n -CU@AX — xfb =
Reduced RLT
The quadratic case Vf S n AWE — xfb
RRLT-1
> constraints
X et 0 Consider homogeneous system V¢ < n (Aw, = 0) and a set
eometric
interpretation N of nonbasic variable index pairs (7, ¢); let:
RRLT literature
review

New developments C — {(X, W) ‘ AX — b /\ \v/]7£ S n (wjf — xij)}

Why bother? Ry = {(x,w)| Ax=bA

Thank you Vi <n (AWK = bgcg) N\ \v’(j, €) c N (wjg = :Cjﬂ?ﬁ)}
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Thm.
Let [n| ={1,...,n}; AN C [n] x [n] C = Ry
Proof
(RRLT system) V¢ <n Awy —xpb = 0=
(replace b by Ax) VI <n Awy, —x;Ax = 0=
(z = wy — xyx are vars. of hom. sys.) V/<n A(w, —x,x) = 0.(1)

(
(1) is homogeneous

N C [n] x |n]: nonbasic of (1) | = <
V(4,¢) € N wje = x4

| B=[n]x[n]\N
by basic linear algebra, A’z = 0 implies V(j,¢) € B (wjs = x,xy).

get square nonsing. subsyst.
A’z =0 of (1)
corresponding to basic cols.

Cor.

RRLT constraints = exact ref. with fewer quadratic terms

Proof

Only need quadratic terms indexed by N, RRLT implies those in B
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Yy
2

C={(z,y,w) [z =1 Nw =y}

1.
1.8 Yy

2 4

R={(z,yw)|z=1Aw=1y)}

McCormick’s rel. of w = xy restricted
toxr=1

Notice C = R (straight red seg-
ment)

Equation w = y can be obtained via
RRLT: multiply equation x = 1 by y
and linearize via w
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RRLT constraints are linearly inde-

pendent

Preliminary
problems

results

on

pooling

INTERNATIONAL
’ TRANSACTIONS
IN OPERATIONAL

12 Tras = Op R 11 Q2004 13-4 RESEARCH

Reduction constraints for the global optimization of NLPs

Leo Libert

DEF, Polieemien 4 Miano, Plaza L. de Vinad 32, EX0I335, Milan, Fraly
E-mail: DberriFaler polimi it

Recaved I July 280% receved m revised form & December 20802 accepied 13 January D00

Abstrac

Convergence of branch-and-bound slgorithms for the solution of NLPs 5 obaned by fmding ever-nesrer
kvwer s upper bounds 1o the sbjective lunction. The lower bound = cakulaied by consiructmg & convex
melaxation of the NLP. Reluction consiranls are new Imesr problem constrant whach are (2) lmearly
melependent from the exsting consiramiz; (k) nedundant with neference Lo the orgnad NLP Gormol i
(&) nat medluneland wath meference Lo il comvex relaxation. Thus, they can be successlully employel Lo neduce
the lezsble regon of the convex relaxstion withoul cullmg the leable region of the ariginal MNLP.

Keywords glohal optimzation; vakd cui; NLP; hranch-and-hound

1. Introduction

Global nonlinear optimization has witnessed a remarkable theoretical development in the last
decade { Adjiman, Schweiger and Floudas, 1998, Floudas, 361, Pardalos, Romeijin 20000, A lot
of mew algorithms have been proposad, either geared towards a apecific problem or class of
problems {Hirafuji and Hagan, 2066 Hagglof, Lindberg and Svensaon, 1995), or more general
(Adjiman et al., 1998; Adjiman, Androulki and Floudas, 199%; Kesavan and Barton, X0d;
Ryoo and Sahinidis 1995, Smith and Pantelides, 199% Vaidyanathan and El-Halwagi, 1996).
Software im plementations of these algonthms, however, are scame, not easily available, and more
im portantly, not mally ready for practical use. One could draw a parallel with the development of
LF solvers, where the straight implementation of an algorithm is usually not enough to give hirth
toa good piece of code; all sons of ‘implementation tricks” are necessary to this end. We feel that
at the present state, global optimization solvers for NLPs are in their basic form, with the
algorithm in place but devoid of other speeding-up devices which are crucial for practical
usahility.

In this article we describe the theory and implmentation of one such spesding-up devics,
mamed ‘method of mduction constmints’, to be wed ina branch-and-bound solution framework.

0 1004 Internatonal Federation of Operational Ressarch Socetes
Publshed by Blackwell PuhBshing Lo

Compact relaxations

SEA 2012 - 25 / 40



General theory

E(:I’(:)I-I.EYTECHNlQUE

Tech . -‘
Jowrnal of Global Oplimization (2005) 33 157195 B Sprmger 2005
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Introduction

Reformulation- S o

e Linearity Embedded in Nonconvex Programs

TeChanue LEO LIBERTI
DE, Polifecnico dif Mikno, Pzza L. da Vined 32, B20033 Mikno, Raly (e-mail Gberiil

RLT literature eletpolimiit)

reVieW (Hocsved 4 May 2003, sccepled i revissd Torm 19 May 2004)

Alstract, Momwconves programs involving bdbnea b and e equality constradnts ofben
R d d RLT appeir mode nonbinea than Chey really are By wsing an automatic symbobc relomulation we
eauce can gubatitele some of e bdinsar erms with bnear constrainig. This hes a damsically

improving effect on the Ughtnes of any convex relaxation of the problan, whch makes
RRLT Ilte ratu re L JO GO 2005. determinsie global oplmzeation dgorithms like spattal Branch-and-Hound much more el
-y .

cienl when appled to the problen.

review
Key wonls Hibnesr, Conwes relasaton, (Hobal oplimmzstson, MINLP, Reducton con-
An nouncement alrainl, Belomulation, BLT
[> General theory General theory of RRLT con- | ..cce
Automatic This paper is concerned with programming problems of the [orm:

reformulation St ra | ntS

min x Qx+ ¢ x4+ fx),
Application to x Q e
quantum chemistry Ax=2,
. glx) =10, | (1
Reformulation proofs W) <0, -
New developments e v

Why bother?

where @ = (gy) is an n = pmatrix, x,0,xb 2 € B, 4 =(ay)is anm « n
matrix having rank m, b e B®, 7B = B, g RB* = B™ b R — B™ and
X5 an arbitrary subset of B* (which might express integrality consiranis

Thank you

on the decision variables, [or example). Molice £ g b are completely arbi-
trary [unctions. Motice also that we assume m=n, oltherwise the [easible
region may be emply. Such a formulation is very general and encompasses
many instances of problems arsing [rom mathematical modelling of real
life processes.

Because the theorv developed herein will enable us o substitule some of
the bilinear terms with hinear constrainls, we can restricl our allention Lo a
more standard formulation (2) of the bilinear problem. This does nol mean
that the methods described only applies 0 problems in formulation (2),
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L. & Pantelides, JOGO 2006:

Graph-based automatic reformula-

tion algorithm

Full computational results on pool-

ing and blending problems

Joumnal of Global Optimization (2006) 36 161-129 C Springer 2006
D0 100 1007 /e DR SE- 00650054

An Exact Reformulation Algorithm for Large
Nonconvex NLPs Involving Bilinear Terms

LEC L[BER‘_H' and COMSTANTINGS €. PANTELIDES?

VCWRS LIX, Erofe Polviechnique, F-9]125 Palwiveav, France

fe-malls fiherti@lix polviechaigue fr

 Centee for Process Syitems Engineering, Depariment of Chemical Engineering and Chemical
Technology, Tmperial Colfege Londow, SWT 2BY London, UK

fe-mails cpaatelidengimperial aek )

(Received 2 February 2004; accepted in revised form 29 January 2006; Published online 22
Aprl 2006

Abstract. Many nonconvex nonlinear programming (WLP) preblems of practical interest
Imvedve bilinear terms and linear constraints, as well as. potentially, other convex and non-
conven terms and constraints In such cases, it may be posaible to augment the formulation
with additional linear constraints (a subset of Reformulation-Linearization Technique con-
strainis) which do not affect the feasible egion of the orginal MLP but tghten that of it
convex relaxation to the extent that some bilinear terme may be dopped from the prob-
lem formulaton. We present an efficlent graph-thecretical algorithm for effecting such exact
reformulations of large, sparse MLPs The global selution of the reformulated problem using
spatial Branch-and Bound algorithms is usually significantly faster than that of the odginal
MLE We illustrate this point by applying cur algorithm to a set of pooling and Bending
global optimization problkms

Key words Biinear, Convex relaxation. Global optimizaton, MWLPE.  Reformulation-
linzadzation technique, RRLT constraints
1. Introduction

We consider the solution of nonlinear programs (NLPs) of the following
standard form.

[P]: min I iy
Az=F (2}

=135 ¥i,JkcB (3)

=2l vijkeF i)

Ik

=hiz) YijeN (3

gz (&)

where z=1(z1,... ,zp) €R¥ are the problem variables, [ 15 an mdex in the

set [L,....pl. A={ay) is an M = p matrix of rank M. EcRY, B, F are
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L., Lavor, Maculan, Chaer Nasci-
mento, DAM 2009:

Application of an RRLT-2 subset
to solving Hartree-Fock systems

D erre A pplied Mt moarics I S -

Contants lists svailable st SownoeDirect

Discrete Applied Mathematics

joumal homapags: www.alsevier.comio cataldsm

Reformulation in mathematical programming: An application to
quantum chemistry

Leo Liberti?, Carlile Lavor®, Nelson Maculan®, Marca Antonio Chaer Mascimento?
00K, Boole Pal et Aqae, 5001 25 Polosam, Fronce

¥ Peporamen: of Appeiad Mo fem aios (IMECC-UNICAME), Saace L ersdy of Gampin, CF G063, 130810 F 0 CompsasF, Fai

“ TR, Univerridade Federd do B de faetry LUK, CF GESIE, Bio de ety B 21945-07 1) Brast

# Pepor o e 0 e Flsboo- Qaimiod, dnsisa o die i in o, Do ersdade Feder g0 Kip de faneirg WP, Ria defoncko, § SVU0.000, Eard

ARTICLE IMFO ABETRACT
Arckfe flzary ! This paper concerns the application of rfommulation techniques in mathematical
Received 26 Deormber 2005 i

programming io a specific prohlem arising in quantum chemisicy, namely the solution of

Rectived in resissioem 20 August 2007 Hartree-Fock syst=ms of squations, which describe atomic and malecular slectonicwavs

im:ﬁ‘:ﬁ::‘:n functions based on the minimization ofafunctional of the erergy Their raditional selution
method does not provide a guarantee of global cptimality and its cutput depends an a

frres provided initial starting peint, Weformulabs this problem as 2 muli-extremal nencomsc

000 poby nemial pragramming problemn, and sobez it with a spatial Branch-and-Baund algarithm

s for global cptimization, The kraezrbounds ar sach node are provided by reformulating the

ancli problem in such a way that its comvex relacation is tight. The validity of the propossd
approach was established by successfully computing the ground -state of the helium and

ol el bergllium atorms, = 2

gg;ﬁpmjm # 20017 Elsevier IV, All rights ressrved.

Branch- ind-Bound

L. INTroducTton

The quanum behavior of 3ms and malscules, in he absence of relacivistic effects and any excemal tme-dependent
perturbations, is determined by the tme-independent Schiddinger equatian:

MU, = Eu, I

where B, the Hamiltanian operator of ihe syseem, represents the toral energy | kineric + potenciali of all the particles of the
SYSIEM,

Analyrical solutions for this aquaricn are only possible far very simple systems. Hence, for the majority of probiems
of INMSFST, one has [0 Tol an $ame Approximace madel. In the Hartee-Fock (HF) madel, the @lactons in atams and
Malecules Move iNdependently of Sach ofher, Tha Moticn of S3ch one of e Slectmns being deermined by the arractive
clemosate porential of the nuck and by  repulsive average fick due oo all the other dectrons of the system. In this
madel, the approximare selutions @, of Eg, { 1) 212 ant-symmetnized preducts of one-clecron wave Inctons jg) (als
callad orbials ), which are solutons of the HF equations for the system under scudy, This model gives rise ro  setof coapled
incegro-differential equarions which can only be soved numerically, Altemarteely, 2ach orbital ¢, can be expanded in a
COMPIETe Basis 521 [, |72, I OTART 00 ANSTorm the HE SqUATIons inta a less curnbersame algebraic probiem, we anly

E-mad odidressex libert @i, pakyvachnique & (L. Liberil clavor@ime unicamp.br( C Lacor, macul an@oosatn,be {8 Maculing, chaer®igqurjbr
IMAC Nastimenco |

O 1562115 - sefronr mamsr-& 2007 Essder BV AN rights reserved
did 1L 1D 16 dam 200 0204

Flease cieechis arcicde in press 2: L Lberi, e o, Refocmulacin in mademacical pragramming: An applcacion oo quanium chemismy, Disoree Applied
MaEnAmaTics {2008, doi 1L 1016} dam 2007, 05044
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Smaller gap = tight bound more likely
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Feasible region of QCQP: use Ry instead of C
Ry relies on quadratic constraints V(j,¢) € N (wj, = x;x¢)
Degree of freedom: choice of basic/nonbasic partition
B, N of [n] X [n]
(4,€) <> volume V;; of conv. env. of z;x,
Convexity gap: V(N) = >, Vi

(3,0)eN
Let N* = argminy V(N)

Smaller gap = tight bound more likely

B, N partition [n] x [n] = N* = [n] X [n] \ arg maxz V(B)
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Greedy algorithm solves problem optimally
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Reformulation: for all J C [n — 1] multiply Ax = b by

I =

j€J

Linearization: replace each term [] z; by the added
jeJ

variable wj (for all J C [n])

Adjoin defining constraints wy = |] z;
jeJ

Define natural extensions of C, Ry

C = {(xw)|[Ax=bAVJC[n—1] (ws =[]}

j€Jd
Ry = {(x,w)|Ax=bAVJ C[n—1] (Aw; =bwj) A
VJeN (wy= ][z}
=
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Why bother?

Thank you

Reformulation: for all J C [n — 1] multiply Ax = b by

I =

j€J

Linearization: replace each term [] z; by the added
jeJ

variable wj (for all J C [n])

Adjoin defining constraints wy = |] z;
jeJ

Define natural extensions of C, Ry

C = {(xw)|[Ax=bAVJC[n—1] (ws =[]}

j€Jd
Ry = {(x,w)|Ax=bAVJ C[n—1] (Aw; =bwj) A
VJeN (wy= ][z}
=

where W — (w(J71), e ,w(J7n))
Main result C' = R still holds
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Choice of optimal N extends from quadratic case, but:
Added complication:
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Choice of optimal N extends from quadratic case, but:
Added complication:

Vij and V;;i are expressed in different units of measure
—  Summing up V7 for J's of different sizes may not make
much sense

Multi-objective problem: Vp € [n] max >  Vj

| J|=p
Thm.
Efficient solution is an optimum of max >  V;
JC|n]

Greedy is still OK

Compact relaxations

SEA 2012 — 33 / 40



Sparsity 1/4

%l
ECOLE L
POLYTECHNIQUE .

Tech

Introduction

Reformulation- 0 Polynomial programs are never dense in practice

Linearization
Technique

RLT lizerature 0 RRLT needs BUN = gZ([n])

review

Reduced RLT

RRLT literature

review

New developments

Optimal RRLT
RRLT for polynomial
programming 1/3
RRLT for polynomial
programming 2/3
RRLT for polynomial
programming 3/3

D> Sparsity 1/4
Sparsity 2/4
Sparsity 3/4
Sparsity 4/4

Why bother?

Thank you

0 Need to introduce exponentially many new monomials

Compact relaxations

SEA 2012 — 34 / 40



Sparsity 2/4

ECOLE
POLYTECHNIQUE

Tech A

[

Introduction

Reformulation-
Linearization
Technique

RLT literature
review

Reduced RLT

RRLT literature

review

New developments

Optimal RRLT
RRLT for polynomial
programming 1/3
RRLT for polynomial
programming 2/3
RRLT for polynomial
programming 3/3
Sparsity 1/4

D> Sparsity 2/4
Sparsity 3/4
Sparsity 4/4

Why bother?

Thank you

8 =set of multi-indices for monomials already in problem

Compact relaxations

SEA 2012 — 35 / 40



Sparsity 2/4

Tl
ECOLE
POLYTECHNIQUE 4

Tech

[

Introduction

Reformulation-
Linearization
Technique

RLT literature
review

Reduced RLT

RRLT literature

review

New developments

Optimal RRLT
RRLT for polynomial
programming 1/3
RRLT for polynomial
programming 2/3
RRLT for polynomial
programming 3/3
Sparsity 1/4

D> Sparsity 2/4
Sparsity 3/4
Sparsity 4/4

Why bother?

Thank you

[

8 =set of multi-indices for monomials already in problem
Every new monomial J ¢ (3 yields a new variable w;

Compact relaxations

SEA 2012 — 35 / 40



Sparsity 2/4

%l
ECOLE L
POLYTECHNIQUE .

Tech

Introduction

Reformulation-

O (3 =set of multi-indices for monomials already in problem
O Every new monomial J & (3 yields a new variable w

Linearization 0 Sometimes dJ ¢ (§ s.t. wy yields > 1 new RRLT constr.

Technique

RLT literature
review

Reduced RLT

RRLT literature

review

New developments

Optimal RRLT
RRLT for polynomial
programming 1/3
RRLT for polynomial
programming 2/3
RRLT for polynomial
programming 3/3
Sparsity 1/4

D> Sparsity 2/4
Sparsity 3/4
Sparsity 4/4

Why bother?

Thank you

Compact relaxations

SEA 2012 — 35 / 40



Sparsity 2/4

g
POLYTECHNIQUE

Tech

Introduction

Reformulation-
Linearization
Technique

O O O

RLT literature
review

Reduced RLT

RRLT literature

review

New developments

Optimal RRLT
RRLT for polynomial
programming 1/3
RRLT for polynomial
programming 2/3
RRLT for polynomial
programming 3/3
Sparsity 1/4

D> Sparsity 2/4
Sparsity 3/4
Sparsity 4/4

Why bother?

Thank you

8 =set of multi-indices for monomials already in problem
Every new monomial J ¢ (3 yields a new variable w;
Sometimes dJ ¢ (8 s.t. wy yields > 1 new RRLT constr.

CCl—I—CCQZ1/\2:(31—562:3/\6:{(1,3)}

one new monomial (zox3) = two new RRLT constraints
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Why bother?

Thank you

8 =set of multi-indices for monomials already in problem
Every new monomial J & (3 yields a new variable w
Sometimes dJ ¢ (8 s.t. wy yields > 1 new RRLT constr.
E.g.

r1+x9o=1A2x1 — 29 :3/\6:{(1,3)}
one new monomial (zox3) = two new RRLT constraints

(xx3 =) wi3z+ was = 3

(><:133 :)

r1+x2 =1

2:131 — T2 = 3 2w13 — W23 — 3:133

Principle: one new equation, one fewer degrees of freedom
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Thank you

8 =set of multi-indices for monomials already in problem
Every new monomial J & (3 yields a new variable w
Sometimes dJ ¢ (8 s.t. wy yields > 1 new RRLT constr.
E.g.

r1+x9o=1A2x1 — 29 :3/\6:{(1,3)}
one new monomial (zox3) = two new RRLT constraints

(xx3 =) wi3z+ was = 3

(><:133 :)

r1+x2 =1

2:131 — T2 = 3 2w13 — W23 — 3:133

Principle: one new equation, one fewer degrees of freedom

Create fewer J's than new RRLT constraints
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wr, X (alx = bl)

WH X (a1x = bl)

oo

wr, X (aQX = bz)

wa(aix:bi

Look for subset p of rows of Ax = b to be multiplied
by a subset o of &(|n — 1]) such that the number of
new vars wy is < number of new RRLT constraints

Formalization: consider bipartite graph (U, V, F)
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Look for subset p of rows of Ax = b to be multiplied
by a subset o of &(|n — 1]) such that the number of
new vars wy is < number of new RRLT constraints

Formalization: consider bipartite graph (U, V, F)

wr, X (alx = bl)

WH X (a1x = bl)

oo

wr, X (aQX = bz)

wa(aix:bi
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Problem:

Look for subset p of rows of Ax = b to be multiplied
by a subset o of &(|n — 1]) such that the number of
new vars wy is < number of new RRLT constraints

Formalization: consider bipartite graph (U, V, F)

U=row i by var. wy (indexed by (i, .J))
V=var. wj with J ¢ 3 (indexed by .J)

wr, X (a1X:b1)
WH X (31X:b1)

wr, X (agx = bz)

wa(aix:bi

oo
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Problem:

Look for subset p of rows of Ax = b to be multiplied
by a subset o of &(|n — 1]) such that the number of
new vars wy is < number of new RRLT constraints

Formalization: consider bipartite graph (U, V, F)

wr, X (alx = bl)

WH X (a1x = bl)

oo

wr, X (agx = bz)

wa(aix:bi

U=row i by var. wy (indexed by (i, .J))
V=var. wj with J ¢ 3 (indexed by .J)
Edges: E=incidence of added vars in RRLT constrs
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Problem:

Look for subset p of rows of Ax = b to be multiplied
by a subset o of &(|n — 1]) such that the number of
new vars wy is < number of new RRLT constraints

Formalization: consider bipartite graph (U, V, F)

wr, X (alx = bl)

WH X (a1x = bl)

oo

wr, X (agx = bz)

wa(aix:bi

U=row i by var. wy (indexed by (i, .J))
V=var. wj with J ¢ 3 (indexed by .J)
Edges: E=incidence of added vars in RRLT constrs

Aim: find induced subgraph (U’, V', E’) such that |U’| is max-
imum, |U’| > |V’|, and V' =neighb(U")
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This problem is in P
Proof

Use matching-based algorithm
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CPU time in sBB: number of nodes, time to solve each node
Need few, small convex relaxation LPs

Usually concentrate on few (tight bound) but /large (valid
cuts)

Different approach: slacken bound, aim to solve each LP
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L]

CPU time in sBB: number of nodes, time to solve each node
Need few, small convex relaxation LPs

Usually concentrate on few (tight bound) but /large (valid
cuts)

Different approach: slacken bound, aim to solve each LP

faster

Outcome:

—  bound quality: 0.07% worse;
—  CPU improvement: 40%

Future work: embed in sBB
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