SEA 2012 – Bordeaux

Implementation and Comparison of Heuristics for the Vertex Cover Problem on Huge Graphs*

Eric Angel ¹ Romain Campigotto ² Christian Laforest ³

¹ IBISC, Université d'Évry-Val d'Essonne

² LAMSADE, CNRS – Université Paris-Dauphine

³ LIMOS, CNRS – Université Blaise Pascal (Clermont-Ferrand)

Friday, June 8th, 2012

*Work supported by the project ANR-09-EMER-010 TODO

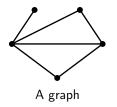
The Vertex Cover problem...

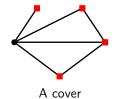
Definition (Cover)

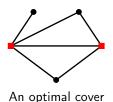
Let G = (V, E) be any simple graph. C is a cover if $C \subseteq V$ and $\forall e = uv \in E, u \in C \text{ or } v \in C \text{ (or both)}.$

Find a cover of minimum size

→ well-known NP-complete optimization graph problem







... on huge graphs

It appears in various applied problems:

- network monitoring;
- SNP haplotype assembly problem (DNA sequence alignment);
- etc.

where data sizes can be very important.

"The amount of data doubles every 20 months!"

Previous works

Theoretical study:

ightarrow Analysis and Comparison of Three Algorithms for the Vertex Cover Problem on Large Graphs with Low Memory Capacities, Algo. Op. Res., Vol. 6, 2011

Previous works (experimental)

Theoretical study:

→ Analysis and Comparison of Three Algorithms for the Vertex Cover Problem on Large Graphs with Low Memory Capacities, Algo. Op. Res., Vol. 6, 2011

Experiments on graphs with $53\cdot 10^6$ vertices and $170\cdot 10^6$ edges for the Max Clique problem

→ J. Abello et al.: On Maximum Clique Problems in Very Large Graphs, DIMACS, Vol. 50, American Mathematical Society, 1999

Previous works (experimental)

Theoretical study:

ightarrow Analysis and Comparison of Three Algorithms for the Vertex Cover Problem on Large Graphs with Low Memory Capacities, Algo. Op. Res., Vol. 6, 2011

Experiments on graphs with $53\cdot 10^6$ vertices and $170\cdot 10^6$ edges for the Max Clique problem

ightarrow J. Abello et al.: On Maximum Clique Problems in Very Large Graphs, DIMACS, Vol. 50, American Mathematical Society, 1999

Experiments for the Vertex Cover problem:

sparse graphs with less than 10,000 vertices

Max sizes $\approx 100 \cdot 10^9$ in our experiments!

Outline

General Description

Results Obtained and Observations

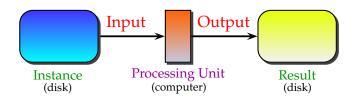
General Synthesis

Outline

- General Description
- Results Obtained and Observations
- General Synthesis

Implementation

Experimental model

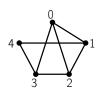


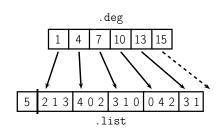
- Instance: stored on a external hard disk (read only access)
- Processing unit: a standard computer (a laptop!)
- → low memory capacities
 - Result: written as soon as it is produced on the external disk

Storage and reading of graphs

With two files

- .list: list of neighbors of vertices
 - .deg: pointers delimiting the neighborhood of each vertex



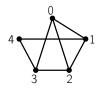


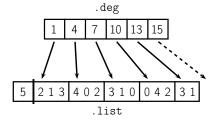
• reading of .list file helped by the .deg file

Storage and reading of graphs

With two files

- .list: list of neighbors of vertices (value n at the beginning) ightarrow 2m+1 values
 - .deg: pointers delimiting the neighborhood of each vertex (degrees computing) ightarrow n+1 values





• reading of .list file helped by the .deg file

Let G = (V, E) be a graph C the cover under construction.

For each vertex $u \in V$,

LR: if $u \notin C$, then $\{v \mid uv \in E \land v \notin C\}$ is put in C;

Let G = (V, E) be a graph C the cover under construction.

For each vertex $u \in V$,

LR: if $u \notin C$, then $\{v \mid uv \in E \land v \notin C\}$ is put in C;

ED: if $u \notin C$ and if $\exists v \in N(u) \mid v \notin C$, u and v go to C;

Let G = (V, E) be a graph C the cover under construction.

For each vertex $u \in V$,

LR: if $u \notin C$, then $\{v \mid uv \in E \land v \notin C\}$ is put in C;

ED: if $u \notin C$ and if $\exists v \in N(u) \mid v \notin C$, u and v go to C;

S-Pitt: if $u \notin C$ and if $\exists v \in N(u) \mid v \notin C$, either u or v is put in C with probability $\frac{1}{2}$;

Let G = (V, E) be a graph C the cover under construction.

For each vertex $u \in V$,

LR: if $u \notin C$, then $\{v \mid uv \in E \land v \notin C\}$ is put in C;

ED: if $u \notin C$ and if $\exists v \in N(u) \mid v \notin C$, u and v go to C;

S-Pitt: if $u \notin C$ and if $\exists v \in N(u) \mid v \notin C$, either u or v is put in C with probability $\frac{1}{2}$;

LL: u is put in C iff $\exists v \in N(u)$ such that v > u;

Let G = (V, E) be a graph C the cover under construction.

For each vertex $u \in V$,

LR: if $u \notin C$, then $\{v \mid uv \in E \land v \notin C\}$ is put in C;

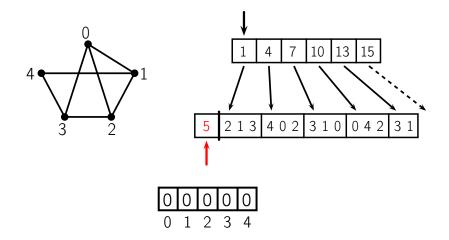
ED: if $u \notin C$ and if $\exists v \in N(u) \mid v \notin C$, u and v go to C;

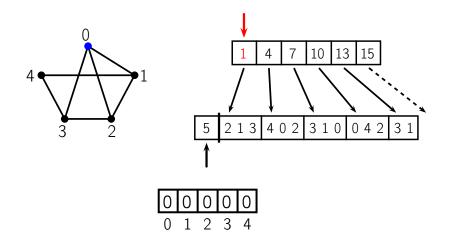
S-Pitt: if $u \notin C$ and if $\exists v \in N(u) \mid v \notin C$, either u or v is put in C with probability $\frac{1}{2}$;

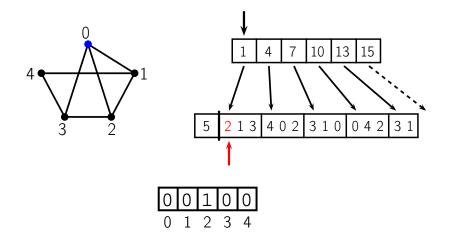
LL: u is put in C iff $\exists v \in N(u)$ such that v > u;

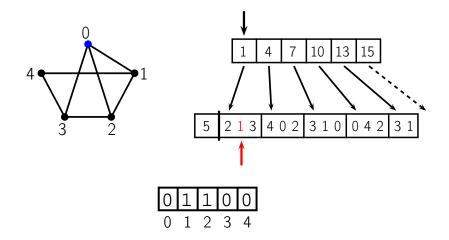
SLL: u is put in C iff $\exists v \in N(u)$ such that d(v) < d(u) or d(v) = d(u) and v > u;

ASLL: u is put in C iff $\exists v \in N(u)$ such that d(v) > d(u) or d(v) = d(u) and v < u.



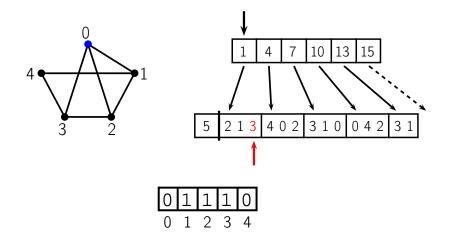


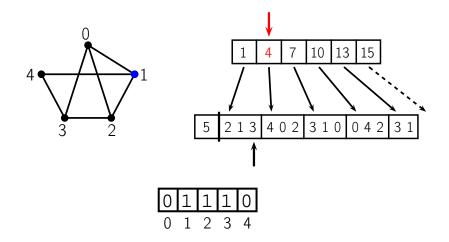


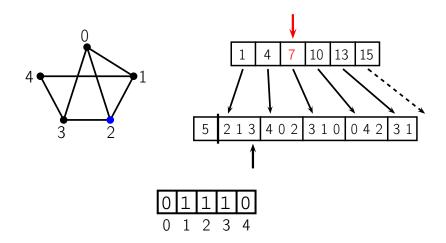


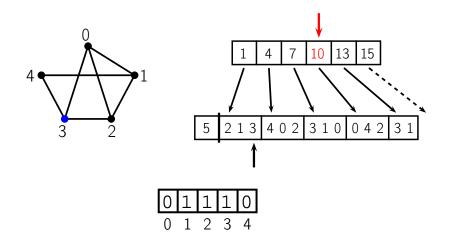
Friday, June 8th, 2012

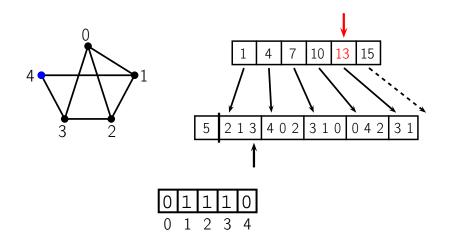
R. Campigotto et al. (LAMSADE)



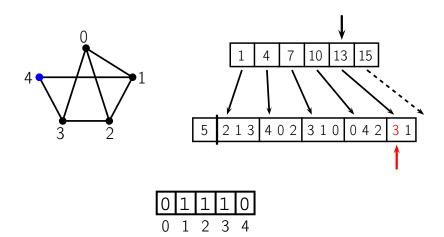


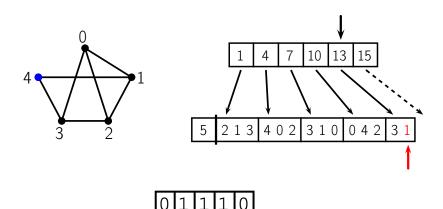


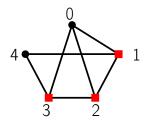


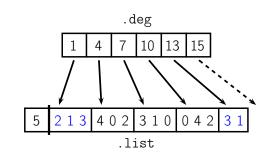


Friday, June 8th, 2012









Cover produced on disk: 2, 1, 3

Number of vertices scanned in the .list file: five (over 14)

 $\rightarrow\,$ We can "step over" neighbors in the .list file.

Algorithms properties

Technical properties

- ① LR, ED and S-Pitt need to allocate an n bits array.
- SLL and ASLL need to compute degrees of neighbors.

Algorithms properties

Technical properties

- ① LR, ED and S-Pitt need to allocate an n bits array.
- 2 SLL and ASLL need to compute degrees of neighbors.

Approximation ratio

LR: Δ

ED: 2 (matching algorithm)

S-Pitt: 2 in expectation

L. Pitt: A Simple Probabilistic Approximation Algorithm for Vertex Cover, Technical Report 404, Yale, 1985

SLL: $\frac{\sqrt{\Delta}}{2} + \frac{3}{2}$

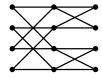
D. Avis et al.: A List Heuristic for Vertex Cover, ORL 2006

LL and ASLL: at least Δ

Graph families used

Sparse graphs (where $m \in \mathcal{O}(n)$):

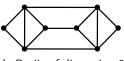
- ButterFly
- de Bruijn graphs
- grid graphs



ButterFly of dimension 2

Dense graphs (where $m \in \Theta(n^2)$):

- hypercubes
- complete bipartite graphs
- complete split graphs



de Bruijn of dimension 3

Why have we chosen these graphs?

- They can be easily constructed (with low memory capacities).
- ② Often, $OPT(G) \leq \frac{n}{2}$

Outline

- General Description
- Results Obtained and Observations
- General Synthesis

Preamble

34 instances generated:

- **1** 13 of size $\approx 200 \cdot 10^6$ (several Gigabytes)
- ② 6 of size $\approx 30 \cdot 10^9$ (> 100 Gb)
- 3 2 of size $\approx 100 \cdot 10^9$ (about 1.5 Tb)

Also: 13 of size \approx 300,000 (several Mb on disk)

→ Random power law graphs for low size levels

Preamble

34 instances generated:

- **1** 13 of size $\approx 200 \cdot 10^6$ (several Gigabytes)
- ② 6 of size $\approx 30 \cdot 10^9$ (> 100 Gb)
- \odot 2 of size $\approx 100 \cdot 10^9$ (about 1.5 Tb)

Also: 13 of size $\approx 300,000$ (several Mb on disk)

→ Random power law graphs for low size levels

Evaluated criteria:

- quality of solutions
- complexity in number of requests
- ightarrow the number of neighbors read in the .list file
 - CPU running times

Results obtained on sparse graphs

Example with instance butterfly-28

n	m	OPT
7,784,628,224	15,032,385,540	3,758,096,384

Size on hard disk: 282 Gb

	Quality ($\times OPT$)	Complexity $(\times m)$	Times (CPU)
LR	1	0.99	pprox 1h12
ED	2	0.61	pprox 1h16
S-Pitt	1.63	0.91	pprox 1h19
LL	1.93	1.03	pprox 1h21
SLL	1.92	1.01	≈ 5h11
ASLL	2	0.72	\approx 3h39

Results obtained on dense graphs

Example with instance compbip-35000.500000

n	m	OPT
535,000	17,500,000,000	35,000

Size on hard disk: 261 Gb

	Quality ($\times OPT$)	Complexity $(\times m)$	Times (CPU)
LR	14.28	1	pprox 24 min
ED	2	0.93	pprox 23 min
S-Pitt	2.01	0.92	pprox 22 min
LL	1	1.001	pprox 23 min
SLL	1	1.001	≈ 6h12
ASLL	14.28	1.002	pprox 6 h12

Quality of solutions

LR is almost always the best.

 \rightarrow It often returns an optimal solution.

SLL offers good performance, especially on random power law graphs.

Quality of solutions

LR is almost always the best.

 \rightarrow It often returns an optimal solution.

SLL offers good performance, especially on random power law graphs.

Global performance of S-Pitt and LL is intermediate.

→ LL "fluctuates" more than S-Pitt.

Quality of solutions

LR is almost always the best.

 \rightarrow It often returns an optimal solution.

SLL offers good performance, especially on random power law graphs.

Global performance of S-Pitt and LL is intermediate.

→ LL "fluctuates" more than S-Pitt.

ED and ASLL are overall the worst.

- → Approximation ratio of 2 often reached for ED (confirmation of observations made by F. Delbot et al.)
 - Analytical and Experimental Comparison of Six Algorithms for the Vertex Cover, ACM Journal of Experimental Algorithmics, 2010

Complexity in number of requests

ED is almost always the best.

ightarrow It performs less than m requests.

Complexity in number of requests

ED is almost always the best.

 \rightarrow It performs less than *m* requests.

LR often reaches *m* requests.

 \rightarrow It cannot perform worse!

Better (< m) when it returns bad solution.

LL, SLL et ASLL can perform more than m requests.

ightarrow ASLL better on complete split graphs!

Complexity in number of requests

ED is almost always the best.

 \rightarrow It performs less than *m* requests.

LR often reaches m requests.

 \rightarrow It cannot perform worse!

Better (< m) when it returns bad solution.

LL, SLL et ASLL can perform more than m requests.

ightarrow ASLL better on complete split graphs!

Correlation between quality of solutions and number of requests!

Observations CPU running times

SLL and ASLL can be longer.

 $\rightarrow \ \mbox{Computing degrees of retrieved neighbors}$

Observations CPU running times

SLL and ASLL can be longer.

→ Computing degrees of retrieved neighbors

On sparse graphs (where $m \in \mathcal{O}(n)$), partially influenced by:

- quality of solutions written
- number of requests produced

On dense graphs, influenced by number of requests

CPU running times

SLL and ASLL can be longer.

→ Computing degrees of retrieved neighbors

On sparse graphs (where $m \in \mathcal{O}(n)$), partially influenced by:

- quality of solutions written
- number of requests produced

On dense graphs, influenced by number of requests

Another technical aspects involved:

- hard drive access times, buffers management, etc.
- ightarrow characteristics highlighted in the *I/O-efficient* model!

Limits encountered

On instance compbip-250000.380000, of size:

• n = 630,000 and m = 95,000,000,000 (1.41 Tb on disk), we can run all the algorithms (except SLL and ASLL).

Limits encountered

On instance compbip-250000.380000, of size:

• n=630,000 and m=95,000,000,000 (1.41 Tb on disk), we can run all the algorithms (except SLL and ASLL).

But, on instance butterfly-30:

n	т
33,285,996,544	64,424,509,440

Size on disk: 1.17 Tb

 \rightarrow only LL can be run on our computer (4 Gb RAM)! (CPU running times \approx 5h48)

Outline

- General Description
- 2 Results Obtained and Observations
- General Synthesis

Conclusion

Despite its performance, the well-adapted algorithm is LL:

- no need to compute degrees of neighbors
- no need to allocate an n bits array

Conclusion

Despite its performance, the well-adapted algorithm is LL:

- no need to compute degrees of neighbors
- no need to allocate an *n* bits array

Moreover, it has interesting properties.

- ullet Easily parallelizable o CPU running times improvement
- graph, a vertex labeling such that LL returns OPT

Conclusion and perspectives

Despite its performance, the well-adapted algorithm is LL:

- no need to compute degrees of neighbors
- no need to allocate an *n* bits array

Moreover, it has interesting properties.

- ullet Easily parallelizable o CPU running times improvement
- \odot \forall graph, \exists a vertex labeling such that LL returns OPT

We could then:

- run it several times (with different vertex labelings)
- → improve quality of its results

Thanks!

Questions?