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Generic Primal Heuristics for MIPs
“good” feasible solutions using the tools of exact optimization

I Truncating an exact method
I Building from the relaxation used for the exact approach
I Defining a target based on the relaxation
I Using dual information to price choices in greedy heuristics
I Exact approach used to explore a neighborhood

Examples: [Berthold’06]

1. Large Scale Neighborhood Search [Ahuja al’02]
2. Relaxation Induced Neighborhood Search [Dana al’05]
3. Local Branching [Fischetti al’03]
4. Feasibility Pump [Fischetti al’05]
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Generic LP based heuristics

min{
∑

j cjxj :
∑

j aijxj ≥ bi ∀i , lj ≤ xj ≤ uj ∀j}

I Rounding: Iteratively select a var xj and bound/fix it
I least fractional: argminj{min{xj − bxjc, dxje − xj}}
I guided search: argminj{|xj − x inc

j |}

I Diving: rounding + LP resolve + reiterate
heuristic depth search in branch-and-bound tree
branching rule 6= that of exact branch-and-bound

I sub-MIPing: rounding/diving + MIP sol of the residual prob.
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Heuristic search in branch-and-bound tree

Diving sub-MIPing
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Feasibility Pump heuristic

Target solution x̃ is obtained by rounding LP solution xLP to the
closest integer solution. If x̃ is not feasible, the problem is
modified:

I 0− 1 integer program

min
{

c x +ε
( ∑

j: x̃j=0

xj +
∑

j: x̃j=1

(1−xj)
)
: A x ≥ a, x ∈ [0,1]n

}
I general integer program (lj ≤ xj ≤ uj )

min
{

c x + ε
( ∑

j:x̃j=lj

(xj − lj) +
∑

j:x̃j=uj

(uj − xj) +
∑

j:lj<x̃j<uj

dj

)
: A x ≥ a,

dj − x̃j ≤ xj ≤ dj + x̃j ∀j , x ∈ Rn
}
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The Branch-and-Price Approach

min c1x1 + c2 x2 + . . . + cK xK

D x1 + D x2 + . . . + D xK ≥ d
B x1 ≥ b

B x2 ≥ b
. . . ≥

...
B xK ≥ b

x1 ∈ Nn, x2 ∈ Nn, . . . xK ∈ Nn.

Relax Dx ≥ d =� decomposition: subproblem {B x ≥ b, x ∈ Nn}
and a reformulation solved by Branch-and-Price:

min
∑

g∈G cxg λg∑
g∈G Dxg λg ≥ d∑

g∈G λg = K
λ ∈ N|G|

y :=
∑

k

xk =
∑
g∈G

xg λg

Pricing Problem

Solve Master LP

Solve Master LPSolve Master LP

Pricing Problem

Pricing Problem
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Difficulties in a B-a-P context for generic heuristics

Heuristic paradigm in original space or the reformulation?

On master variables: λ (aggregated decisions)
I Cannot fix bounds (as in rounding)
I Cannot modify costs (as in feasibility pump)

On original variables: x (disaggregated decisions)
I Cannot grasp individual SP var. after aggregation in the

common case of identical SPs
I Cannot modify the SP structure required by the oracle

Differences
I Acting on master λ variables results in a more

macroscopic decision.
I Faster progress to an integer solution, but you can quickly

“paint yourself in a corner”
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Generic modifications of the master

I Setting a lower bound of a column: λg ≥ lg
I Decreasing cost cg of a column λg

In both cases, pricing oracle overestimates the reduced cost of
column λg already included in the master.

Preprocessing

I Lower bound setting is done by fixing a partial
(“rounded-down”) solution

I After that, the residual master problem is defined by
preprocessing:

I updating RHS of the master;
I updating bounds for subproblem variables.
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Pure Diving Heuristic
Depth-First Search

I select least fractional col: λs ← dλ̄sc
I update master and SP
I apply preprocessing
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Generic Feasibility Pump algorithm I
I Solution λ̃ is defined by rounding the LP solution λLP .
I If λ̃ is feasible, stop. Otherwise, we use λ̃ as a target point.
I We decrease the cost of rounded-up columns and increase

the cost of rounded-down ones (but not beyond the original
cost).

Cost modification factor functions

λ

f 1(λ, α)

0.1

−0.1

α

1

f 1(λ, α) =

{
0.1 λ

α
if λ ≤ α

−0.1 (1−λ)
(1−α)

if λ > α

λ

f 2(λ, α)

−0.1

1

0.1

1
α

f 2(λ, α) =

{
0.1 (1− λ

α
) if λ ≤ α

−0.1 (λ−α)
(1−α)

if λ > α

23 / 29



Generic Feasibility Pump algorithm I
I Solution λ̃ is defined by rounding the LP solution λLP .
I If λ̃ is feasible, stop. Otherwise, we use λ̃ as a target point.
I We decrease the cost of rounded-up columns and increase

the cost of rounded-down ones (but not beyond the original
cost).

Cost modification factor functions

λ

f 1(λ, α)

0.1

−0.1

α

1

f 1(λ, α) =

{
0.1 λ

α
if λ ≤ α

−0.1 (1−λ)
(1−α)

if λ > α

λ

f 2(λ, α)

−0.1

1

0.1

1
α

f 2(λ, α) =

{
0.1 (1− λ

α
) if λ ≤ α

−0.1 (λ−α)
(1−α)

if λ > α

24 / 29



Embedding Feasibility Pump in a Diving heuristic

I At iteration t , the modified master becomes

min
{ ∑

g∈Gt

ct
gλg :

∑
g∈Gt

(Axg)λg ≥ at ;
∑
g∈Gt

λg = K t ; λg ∈ N ∀g ∈ Gt
}

I Before defining target solution λ̃t , the “rounded-down”
integer part of λt

LP is fixed and removed: λt
g ← λt

g − bλt
gc

(this way the residual master is close to a 0− 1 problem).
I Cycling can occur if no columns are rounded up in λ̃t . In

this case, we decrease fractionality threshold parameter α
(initially α← 0.5).
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Cutting Stock Problem

n = 50,100
di ∈ [1,50]

W = 10000
wi ∈ [500,2500]

50 instances for each n

n function found opt gap time
50 Pure Div. 50/50 43/50 0.07 1.17
50 f 1 50/50 45/50 0.05 6.14
50 f 2 50/50 41/50 0.09 4.82

100 Pure Div. 50/50 35/50 0.08 4.08
100 f 1 50/50 43/50 0.04 23.93
100 f 2 50/50 40/50 0.05 17.98
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Generalized Assignment

cost

cost

cost

cost

cost

Tasks Machines
assignment

Instances from OR-Library
(type D)

50 instances for each (n,m)

m n function found gap time
10 50 Pur Div. 34/50 1.00% 0.37
10 50 f 1 36/50 0.98% 1.81
10 50 f 2 48/50 1.14% 0.81
20 100 Pur Div. 35/50 0.65% 2.46
20 100 f 1 36/50 0.55% 14.56
20 100 f 2 42/50 0.75% 5.92
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Conclusions
Summary

I Feasibility Pump heuristic can be extended to the column
generation context

I The key is to restrict problem modifications to setting lower
bound and cost reduction.

I Compared with the generic diving heuristic, feasibility
pump heuristic produced more feasible primal solutions
without loosing on the quality.

Future work
I Adaptation of diversification mechanisms for the Feasibility

Pump heuristic
I Numerical tests on a larger scope of applications
I Compare Feasibility Pump heuristic on aggregated

variables λ versus Feasibility Pump in the space of original
variables x .
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