Exact Graph Search Algorithms for Generalized Traveling Salesman Path Problems

Michael N. Rice Vassilis J. Tsotras

University of California, Riverside (UCR)

11th International Symposium on Experimental Algorithms

Graph

• Weighted, directed graph G = (V, E)

Graph

• Weighted, directed graph G = (V, E)

Category Set

- $C = \{C_1, C_2, \dots, C_k\}$ defined on G
- $C_i = \{c_{i,1}, c_{i,2}, \dots, c_{i,|C_i|}\} \subseteq V$
- Category count k = |C|, category density $g = \max_{1 \le i \le k} \{|C_i|\}$

Graph

• Weighted, directed graph G = (V, E)

Category Set

- $C = \{C_1, C_2, \dots, C_k\}$ defined on G
- $C_i = \{c_{i,1}, c_{i,2}, \ldots, c_{i,|C_i|}\} \subseteq V$
- Category count k = |C|, category density $g = \max_{1 \le i \le k} \{|C_i|\}$

Satisfying Path

A path, P, satisfies a category set C if, for $1 \le i \le k$, $P \cap C_i \ne \emptyset$.

Graph

• Weighted, directed graph G = (V, E)

Category Set

- $C = \{C_1, C_2, ..., C_k\}$ defined on G
 - $C_i = \{c_{i,1}, c_{i,2}, \dots, c_{i,|C_i|}\} \subseteq V$
 - Category count k = |C|, category density $g = \max_{1 \le i \le k} \{|C_i|\}$

Satisfying Path

A path, P, satisfies a category set C if, for $1 \le i \le k$, $P \cap C_i \ne \emptyset$.

Generalized Traveling Salesman Path Problem (GTSPP)

- Instance: $\langle s, t, C \rangle$, for $s, t \in V$ and category set C
- Solution: Minimum-weight satisfying path from s to t

SEA 2012

GTSPP Example

- Instance: $\langle s, t, C \rangle$
- $C = \{C_1, C_2\}$
- $C_1 = \{c_{1,1}, c_{1,2}\}$
- $C_2 = \{c_{2,1}, c_{2,2}\}$

GTSPP Example

- Instance: $\langle s, t, C \rangle$
- $C = \{C_1, C_2\}$
- $C_1 = \{c_{1,1}, c_{1,2}\}$
- $C_2 = \{c_{2,1}, c_{2,2}\}$
- Solution: $P_{s,t}$ is optimal

Background and Related Work

- GTSP introduced in 1960s
- NP-hard generalization of the classical TSP
- Goes by many names...
 - Errand Scheduling
 - Group TSP
 - Set TSP
 - One-of-a-Set TSP
 - Multiple-Choice TSP
 - TSP with Neighborhoods
 - . . .
- Many exact, approximate, and heuristic approaches exist, but...

• Existing work relies on complete-graph "abstraction"

• Existing work relies on complete-graph "abstraction"

 Requires intermediate processing stage during query to compute many-to-many cost matrix

- Requires intermediate processing stage during query to compute many-to-many cost matrix
- ullet O(kg) graph searches just to set up the problem for other algorithms

- Requires intermediate processing stage during query to compute many-to-many cost matrix
- O(kg) graph searches just to set up the problem for other algorithms
- Our proposed algorithms have running times $O^*(2^k)$

- Requires intermediate processing stage during query to compute many-to-many cost matrix
- ullet O(kg) graph searches just to set up the problem for other algorithms
- Our proposed algorithms have running times $O^*(2^k)$
- ullet Advantageous for problems where $k \ll g$

- Requires intermediate processing stage during query to compute many-to-many cost matrix
- ullet O(kg) graph searches just to set up the problem for other algorithms
- Our proposed algorithms have running times $O^*(2^k)$
- Advantageous for problems where $k \ll g$
- Most GTSPP problems in personal navigation domain have this characteristic asymmetry:
 - Very few "errands" per trip (i.e., small k)
 - Many choices per "errand" (i.e., large g)

- Requires intermediate processing stage during query to compute many-to-many cost matrix
- ullet O(kg) graph searches just to set up the problem for other algorithms
- Our proposed algorithms have running times $O^*(2^k)$
- Advantageous for problems where $k \ll g$
- Most GTSPP problems in personal navigation domain have this characteristic asymmetry:
 - Very few "errands" per trip (i.e., small k)
 - Many choices per "errand" (i.e., large g)

- Requires intermediate processing stage during query to compute many-to-many cost matrix
- ullet O(kg) graph searches just to set up the problem for other algorithms
- Our proposed algorithms have running times $O^*(2^k)$
- ullet Advantageous for problems where $k \ll g$
- Most GTSPP problems in personal navigation domain have this characteristic asymmetry:
 - Very few "errands" per trip (i.e., small k)
 - Many choices per "errand" (i.e., large g)

Canonical Example

- k = 5, g = 10,000
- ullet Constructing complete graph would require pprox 1 minute preparation
- We solve it optimally in < 2 seconds!

Covering Graph

- For $C = \{C_1, C_2, \dots, C_k\}$, let $G(\mathcal{B}_k) = (\mathcal{P}(C), E(\mathcal{B}_k))$
- $E(\mathcal{B}_k)$ is the minimal set of edges representing inclusion

Covering Graph

- For $C = \{C_1, C_2, ..., C_k\}$, let $G(\mathcal{B}_k) = (\mathcal{P}(C), E(\mathcal{B}_k))$
- ullet $E(\mathcal{B}_k)$ is the minimal set of edges representing inclusion

Examples

Covering graphs for k = 1, k = 2, and k = 3.

Covering Graph

- For $C = \{C_1, C_2, \dots, C_k\}$, let $G(\mathcal{B}_k) = (\mathcal{P}(C), E(\mathcal{B}_k))$
- ullet $E(\mathcal{B}_k)$ is the minimal set of edges representing inclusion

Examples

Covering graphs for k = 1, k = 2, and k = 3.

Product Graph

- Let $G_C = G \times G(\mathcal{B}_k) = (V \times \mathcal{P}(C), E_1 \cup E_2)$
- E_1 represents E for every subset in $\mathcal{P}(C)$
- \bullet E_2 represents accumulation of a new category via a category node

Product Graph

- Let $G_C = G \times G(\mathcal{B}_k) = (V \times \mathcal{P}(C), E_1 \cup E_2)$
- E_1 represents E for every subset in $\mathcal{P}(C)$
- \bullet E_2 represents accumulation of a new category via a category node

Product Graph

- Let $G_C = G \times G(\mathcal{B}_k) = (V \times \mathcal{P}(C), E_1 \cup E_2)$
- E_1 represents E for every subset in $\mathcal{P}(C)$
- \bullet E_2 represents accumulation of a new category via a category node

Theorem

A shortest path in G_C from $\langle s, \emptyset \rangle$ to $\langle t, C \rangle$ represents an equivalent-cost, optimal solution for instance $\langle s, t, C \rangle$ in the original graph G.

Theorem.

A shortest path in G_C from $\langle s, \emptyset \rangle$ to $\langle t, C \rangle$ represents an equivalent-cost, optimal solution for instance $\langle s, t, C \rangle$ in the original graph G.

Any shortest path search algorithm will work

Theorem

A shortest path in G_C from $\langle s, \emptyset \rangle$ to $\langle t, C \rangle$ represents an equivalent-cost, optimal solution for instance $\langle s, t, C \rangle$ in the original graph G.

- Any shortest path search algorithm will work
- E.g., Dijkstra's algorithm is a natural choice

Theorem

A shortest path in G_C from $\langle s, \emptyset \rangle$ to $\langle t, C \rangle$ represents an equivalent-cost, optimal solution for instance $\langle s, t, C \rangle$ in the original graph G.

- Any shortest path search algorithm will work
- E.g., Dijkstra's algorithm is a natural choice

Theorem

A shortest path in G_C from $\langle s, \emptyset \rangle$ to $\langle t, C \rangle$ represents an equivalent-cost, optimal solution for instance $\langle s, t, C \rangle$ in the original graph G.

- Any shortest path search algorithm will work
- E.g., Dijkstra's algorithm is a natural choice

Theorem

A Dijkstra search in G_C runs in $O(2^k(m + nk + nlogn))$ time.

Product Graph Search Algorithms

Theorem

A shortest path in G_C from $\langle s, \emptyset \rangle$ to $\langle t, C \rangle$ represents an equivalent-cost, optimal solution for instance $\langle s, t, C \rangle$ in the original graph G.

- Any shortest path search algorithm will work
- E.g., Dijkstra's algorithm is a natural choice

Theorem

A Dijkstra search in G_C runs in $O(2^k(m + nk + nlogn))$ time.

Optimization

- Do not explicitly construct the product graph
- Materialize the graph implicitly as needed

Advanced Product Graph Search

• We can do better!

Advanced Product Graph Search

- We can do better!
- We take advantage of two key aspects:
 - Recent progress in speedup techniques for road networks
 - Useful structural properties of the product graph

Advanced Product Graph Search

- We can do better!
- We take advantage of two key aspects:
 - Recent progress in speedup techniques for road networks
 - Useful structural properties of the product graph
- Extend product graph search to incorporate the state-of-the-art Contraction Hierarchies technique

CH Preprocessing

Establish strict total ordering of nodes (i.e., the "hierarchy"), and "contract" nodes in this order.

CH Preprocessing

Establish strict total ordering of nodes (i.e., the "hierarchy"), and "contract" nodes in this order.

Example

CH Preprocessing

Establish strict total ordering of nodes (i.e., the "hierarchy"), and "contract" nodes in this order.

CH Preprocessing

Establish strict total ordering of nodes (i.e., the "hierarchy"), and "contract" nodes in this order.

Example

CH Preprocessing

Establish strict total ordering of nodes (i.e., the "hierarchy"), and "contract" nodes in this order.

CH Preprocessing

Establish strict total ordering of nodes (i.e., the "hierarchy"), and "contract" nodes in this order.

Example

CH Preprocessing

Establish strict total ordering of nodes (i.e., the "hierarchy"), and "contract" nodes in this order.

CH Preprocessing

Establish strict total ordering of nodes (i.e., the "hierarchy"), and "contract" nodes in this order.

Example

CH Preprocessing

Establish strict total ordering of nodes (i.e., the "hierarchy"), and "contract" nodes in this order.

CH Query

CH Query

CH Query

CH Query

Alternate Algorithm: Sweeping Search

 $oldsymbol{0}$ Take the union of "upward-reachable" search spaces from s and t

- **1** Take the union of "upward-reachable" search spaces from s and t
- Sweep the unioned search space by node rank order

Path Type #3: Decreasing Rank

- Take the union of "upward-reachable" search spaces from s and t
- Sweep the unioned search space by node rank order
 - $\bullet \ \ \, \text{Upsweep: relax outgoing "upward-leading" edges in increasing rank}$

- Take the union of "upward-reachable" search spaces from s and t
- Sweep the unioned search space by node rank order
 - $\textbf{0} \quad \text{Upsweep: relax outgoing "upward-leading" edges in increasing rank}$

- Take the union of "upward-reachable" search spaces from s and t
- Sweep the unioned search space by node rank order
 - $\textbf{0} \quad \text{Upsweep: relax outgoing "upward-leading" edges in increasing rank}$

- Take the union of "upward-reachable" search spaces from s and t
- Sweep the unioned search space by node rank order
 - $\textbf{0} \quad \text{Upsweep: relax outgoing "upward-leading" edges in increasing rank}$

- Take the union of "upward-reachable" search spaces from s and t
- Sweep the unioned search space by node rank order
 - $\textbf{0} \quad \text{Upsweep: relax outgoing "upward-leading" edges in increasing rank}$

- Take the union of "upward-reachable" search spaces from s and t
- Sweep the unioned search space by node rank order
 - $\textbf{0} \quad \text{Upsweep: relax outgoing "upward-leading" edges in increasing rank}$

- f 0 Take the union of "upward-reachable" search spaces from s and t
- Sweep the unioned search space by node rank order
 - Upsweep: relax outgoing "upward-leading" edges in increasing rank
 - Ownsweep: relax incoming "upward-leading" edges in decreasing rank

Path Type #3: Decreasing Rank

- f 0 Take the union of "upward-reachable" search spaces from s and t
- Sweep the unioned search space by node rank order
 - Upsweep: relax outgoing "upward-leading" edges in increasing rank
 - Oownsweep: relax incoming "upward-leading" edges in decreasing rank

- f 0 Take the union of "upward-reachable" search spaces from s and t
- Sweep the unioned search space by node rank order
 - Upsweep: relax outgoing "upward-leading" edges in increasing rank
 - Oownsweep: relax incoming "upward-leading" edges in decreasing rank

- f 0 Take the union of "upward-reachable" search spaces from s and t
- Sweep the unioned search space by node rank order
 - Upsweep: relax outgoing "upward-leading" edges in increasing rank
 - Oownsweep: relax incoming "upward-leading" edges in decreasing rank

Path Type #3: Decreasing Rank

- lacksquare Take the union of "upward-reachable" search spaces from s and t
- Sweep the unioned search space by node rank order
 - Upsweep: relax outgoing "upward-leading" edges in increasing rank
 - Oownsweep: relax incoming "upward-leading" edges in decreasing rank

- f 0 Take the union of "upward-reachable" search spaces from s and t
- Sweep the unioned search space by node rank order
 - Upsweep: relax outgoing "upward-leading" edges in increasing rank
 - Oownsweep: relax incoming "upward-leading" edges in decreasing rank

Level-Sweeping Search (LESS) Algorithm

ullet Take the union of "upward-reachable" search spaces from $s,\ t,\ and\ C$

- Take the union of "upward-reachable" search spaces from s, t, and C
- ② For $0 \le i \le k$, at each level G_i :

- Take the union of "upward-reachable" search spaces from s, t, and C
- ② For $0 \le i \le k$, at each level G_i :
 - **①** Sweep the unioned search space for all $\binom{k}{i}$ subsets per node at level G_i

- Take the union of "upward-reachable" search spaces from s, t, and C
- ② For $0 \le i \le k$, at each level G_i :
 - **1** Sweep the unioned search space for all $\binom{k}{i}$ subsets per node at level G_i
 - **9** If i < k, transfer costs to G_{i+1} along (zero-cost) E_2 edges

- Take the union of "upward-reachable" search spaces from s, t, and C
- ② For $0 \le i \le k$, at each level G_i :
 - Sweep the unioned search space for all $\binom{k}{i}$ subsets per node at level G_i
 - ② If i < k, transfer costs to G_{i+1} along (zero-cost) E_2 edges

- Take the union of "upward-reachable" search spaces from s, t, and C
- ② For $0 \le i \le k$, at each level G_i :
 - **1** Sweep the unioned search space for all $\binom{k}{i}$ subsets per node at level G_i
 - 2 If i < k, transfer costs to G_{i+1} along (zero-cost) E_2 edges

Theorem

Theorem

LESS runs in $O(2^k(m'+nk))$ time, where $m'=|E\cup E'|$.

ullet In practice, its runtime is proportional to the size of the unioned search space (influenced by g)

Theorem

- In practice, its runtime is proportional to the size of the unioned search space (influenced by g)
- Question: can we reduce the size of the search space?

Theorem

- In practice, its runtime is proportional to the size of the unioned search space (influenced by g)
- Question: can we reduce the size of the search space?
- If we can identify suboptimal category nodes, we can remove them

Theorem

- In practice, its runtime is proportional to the size of the unioned search space (influenced by g)
- Question: can we reduce the size of the search space?
- If we can identify suboptimal category nodes, we can remove them

Theorem

LESS runs in $O(2^k(m'+nk))$ time, where $m'=|E\cup E'|$.

- In practice, its runtime is proportional to the size of the unioned search space (influenced by g)
- Question: can we reduce the size of the search space?
- If we can identify suboptimal category nodes, we can remove them

Theorem

LESS runs in $O(2^k(m'+nk))$ time, where $m'=|E\cup E'|$.

- In practice, its runtime is proportional to the size of the unioned search space (influenced by g)
- Question: can we reduce the size of the search space?
- If we can identify suboptimal category nodes, we can remove them

Pruning (requires an admissible heuristic function $h: V \times V \to \mathbb{R}_{\geq 0}$)

Establish upper bound on optimal solution:

Theorem

LESS runs in $O(2^k(m'+nk))$ time, where $m'=|E\cup E'|$.

- In practice, its runtime is proportional to the size of the unioned search space (influenced by g)
- Question: can we reduce the size of the search space?
- If we can identify suboptimal category nodes, we can remove them

- Establish upper bound on optimal solution:
 - lacktriangle Construct satisfying path P' via greedy, nearest-neighbor strategy

Theorem

LESS runs in $O(2^k(m'+nk))$ time, where $m'=|E\cup E'|$.

- In practice, its runtime is proportional to the size of the unioned search space (influenced by g)
- Question: can we reduce the size of the search space?
- If we can identify suboptimal category nodes, we can remove them

- Establish upper bound on optimal solution:
 - lacktriangle Construct satisfying path P' via greedy, nearest-neighbor strategy
 - **2** $\mu = w(P')$

Theorem

LESS runs in $O(2^k(m'+nk))$ time, where $m'=|E\cup E'|$.

- In practice, its runtime is proportional to the size of the unioned search space (influenced by g)
- Question: can we reduce the size of the search space?
- If we can identify suboptimal category nodes, we can remove them

- Establish upper bound on optimal solution:
 - lacktriangle Construct satisfying path P' via greedy, nearest-neighbor strategy
 - **2** $\mu = w(P')$
- 2 For $1 \le i \le k$, for all $c_{i,j} \in C_i$:

Theorem

LESS runs in $O(2^k(m'+nk))$ time, where $m'=|E\cup E'|$.

- In practice, its runtime is proportional to the size of the unioned search space (influenced by g)
- Question: can we reduce the size of the search space?
- If we can identify suboptimal category nodes, we can remove them

- Establish upper bound on optimal solution:
 - Construct satisfying path P' via greedy, nearest-neighbor strategy
 - **2** $\mu = w(P')$
- ② For $1 \le i \le k$, for all $c_{i,j} \in C_i$:
 - **1** Prune $c_{i,j}$ if $\mu < h(s, c_{i,j}) + h(c_{i,j}, t)$

Theorem

LESS runs in $O(2^k(m'+nk))$ time, where $m'=|E\cup E'|$.

- In practice, its runtime is proportional to the size of the unioned search space (influenced by g)
- Question: can we reduce the size of the search space?
- If we can identify suboptimal category nodes, we can remove them

- Establish upper bound on optimal solution:
 - Construct satisfying path P' via greedy, nearest-neighbor strategy
 - **2** $\mu = w(P')$
- ② For $1 \le i \le k$, for all $c_{i,j} \in C_i$:
 - **1** Prune $c_{i,j}$ if $\mu < h(s, c_{i,j}) + h(c_{i,j}, t)$

Theorem

LESS runs in $O(2^k(m'+nk))$ time, where $m'=|E\cup E'|$.

- In practice, its runtime is proportional to the size of the unioned search space (influenced by g)
- Question: can we reduce the size of the search space?
- If we can identify suboptimal category nodes, we can remove them

- Establish upper bound on optimal solution:
 - \bullet Construct satisfying path P' via greedy, nearest-neighbor strategy
- 2 For $1 \le i \le k$, for all $c_{i,j} \in C_i$:
 - Prune $c_{i,j}$ if $\mu < h(s, c_{i,j}) + h(c_{i,j}, t)$
 - After pruning, carry out LESS search, as before

Experiments

- Dataset:
 - Road network of US/Canada with |V| = 21M and |E| = 52M
- Environment:
 - Server: 2.53GHz CPU, 18GB RAM
 - Language: C++
- Preprocessing:
 - CH: 18 minutes preprocessing time
 - Pre-Computed Cluster Distances (PCD): 7 minutes (using CH)
- Algorithms:
 - Unidirectional Dijkstra (U. Dijkstra)
 - Bidirectional Dijkstra (B. Dijkstra)
 - Level-Sweeping Search (LESS)
 - LESS + Pruning (P-LESS)
- Queries:
 - Non-Local Queries: cases where $s \neq t$
 - Local Queries: cases where s = t

Category Density Experiments: Non-Local Queries $(s \neq t, k = 5)$

Category Density Experiments: Local Queries (s = t, k = 5)

Category Count Experiments: Non-Local Queries $(s \neq t, g = 10,000)$

Category Count Experiments: Local Queries (s = t, g = 10,000)

Summary

- New product graph framework for efficient graph search
- Can solve real-world GTSPP instances to optimality in seconds!
- Two competitive algorithms with performance tradeoffs:
 - Dijkstra: good for highly-local, very-dense queries (no pre-processing required)
 - LESS (with pruning): more consistent performance across various sizes and localities

Future Work

- Better space utilization (e.g., reduced memory overhead, better cache locality)
- More aggressive pruning strategies
- Incorporate goal-direction (e.g., A*)
- Parallelization (exploiting subgraph independence)
- Approximation algorithms

Questions?