
How to Attack the NP-Complete Dag Realization
Problem in Practice

Annabell Berger and Matthias Müller-Hannemann

Institut für Informatik
Martin-Luther-Universität Halle-Wittenberg
http://www.informatik.uni-halle.de

June 7, 2012

c©2012 Berger and Müller-Hannemann MLU Halle-Wittenberg Dag Realization 1

Introduction

The Dag Realization Problem

Problem (dag realization problem)

Given is a finite sequence S :=
(a1
b1

)
, . . . ,

(an
bn

)
with ai , bi ∈ Z+

0 .
Does there exist a dag (acyclic digraph without parallel arcs)
G = (V ,A) with the labeled vertex set V := {v1, . . . , vn} such
that we have indegree d−G (vi) = ai and outdegree d+

G (vi) = bi for
all vi ∈ V ?

In case the answer is “yes” we call

sequence S dag sequence

dag G a dag realization

c©2012 Berger and Müller-Hannemann MLU Halle-Wittenberg Dag Realization 2

Introduction

The Dag Realization Problem

Problem (dag realization problem)

Given is a finite sequence S :=
(a1
b1

)
, . . . ,

(an
bn

)
with ai , bi ∈ Z+

0 .
Does there exist a dag (acyclic digraph without parallel arcs)
G = (V ,A) with the labeled vertex set V := {v1, . . . , vn} such
that we have indegree d−G (vi) = ai and outdegree d+

G (vi) = bi for
all vi ∈ V ?

In case the answer is “yes” we call

sequence S dag sequence

dag G a dag realization

c©2012 Berger and Müller-Hannemann MLU Halle-Wittenberg Dag Realization 2

Introduction

The Dag Realization Problem – an Example

Given is a sequence(0
2

)
,
(0

1

)
,
(1

3

)
,
(2

2

)
,
(2

1

)
,
(2

0

)
,
(2

0

)
.

Find an acyclic digraph with corresponding vertex degrees.

c©2012 Berger and Müller-Hannemann MLU Halle-Wittenberg Dag Realization 3

Introduction

Terminology

Classification of tuples
(ai
bi

)

source tuple: ai = 0 and bi > 0

sink tuple: ai > 0 and bi = 0

stream tuple: ai > 0 and bi > 0

Assumptions:

no zero tuples
(0

0

)
∑n

i=1 ai =
∑n

i=1 bi (necessary for realization)

c©2012 Berger and Müller-Hannemann MLU Halle-Wittenberg Dag Realization 4

Introduction

Digraph Realization is Easy

Problem (digraph realization problem)

Given is a finite sequence S :=
(a1
b1

)
, . . . ,

(an
bn

)
with ai , bi ∈ Z+

0 .
Does there exist a digraph (without parallel arcs) G = (V ,A) with
the labeled vertex set V := {v1, . . . , vn} such that we have
indegree d−G (vi) = ai and outdegree d+

G (vi) = bi for all vi ∈ V ?

Two different approaches with polynomial running time:

1 recursive algorithms (KLEITMAN, WANG 1973) — choose an
arbitrary tuple

(ai
bi

)
and reduce from bi lexicographical largest

tuples the aj by “one”

2 complete characterization of digraph sequences (GALE 1957,
RYSER 1957, FULKERSON 1960, CHEN 1966) — check a
polynomial number of inequalities (in the size n)

c©2012 Berger and Müller-Hannemann MLU Halle-Wittenberg Dag Realization 5

Introduction

Digraph Realization is Easy

Problem (digraph realization problem)

Given is a finite sequence S :=
(a1
b1

)
, . . . ,

(an
bn

)
with ai , bi ∈ Z+

0 .
Does there exist a digraph (without parallel arcs) G = (V ,A) with
the labeled vertex set V := {v1, . . . , vn} such that we have
indegree d−G (vi) = ai and outdegree d+

G (vi) = bi for all vi ∈ V ?

Two different approaches with polynomial running time:

1 recursive algorithms (KLEITMAN, WANG 1973) — choose an
arbitrary tuple

(ai
bi

)
and reduce from bi lexicographical largest

tuples the aj by “one”

2 complete characterization of digraph sequences (GALE 1957,
RYSER 1957, FULKERSON 1960, CHEN 1966) — check a
polynomial number of inequalities (in the size n)

c©2012 Berger and Müller-Hannemann MLU Halle-Wittenberg Dag Realization 5

Introduction

Digraph Realization is Easy

Problem (digraph realization problem)

Given is a finite sequence S :=
(a1
b1

)
, . . . ,

(an
bn

)
with ai , bi ∈ Z+

0 .
Does there exist a digraph (without parallel arcs) G = (V ,A) with
the labeled vertex set V := {v1, . . . , vn} such that we have
indegree d−G (vi) = ai and outdegree d+

G (vi) = bi for all vi ∈ V ?

Two different approaches with polynomial running time:

1 recursive algorithms (KLEITMAN, WANG 1973) — choose an
arbitrary tuple

(ai
bi

)
and reduce from bi lexicographical largest

tuples the aj by “one”

2 complete characterization of digraph sequences (GALE 1957,
RYSER 1957, FULKERSON 1960, CHEN 1966) — check a
polynomial number of inequalities (in the size n)

c©2012 Berger and Müller-Hannemann MLU Halle-Wittenberg Dag Realization 5

Introduction

Complexity of Dag Realization

Theorem (Nichterlein 2011)

The dag realization problem is (strongly) NP-complete.

Proof: by reduction from 3-PARTITION

Theorem (Hartung and Nichterlein 2012)

The dag realization problem is fixed parameter tractable with
respect to the parameter maximum degree ∆.

Note: This is a mere classification result. The running time of

their FPT algorithm is ∆∆∆O(∆)

· n!

c©2012 Berger and Müller-Hannemann MLU Halle-Wittenberg Dag Realization 6

Introduction

Complexity of Dag Realization

Theorem (Nichterlein 2011)

The dag realization problem is (strongly) NP-complete.

Proof: by reduction from 3-PARTITION

Theorem (Hartung and Nichterlein 2012)

The dag realization problem is fixed parameter tractable with
respect to the parameter maximum degree ∆.

Note: This is a mere classification result. The running time of

their FPT algorithm is ∆∆∆O(∆)

· n!

c©2012 Berger and Müller-Hannemann MLU Halle-Wittenberg Dag Realization 6

Introduction

Realization with a Fixed Topological Order

Realization with a prescribed topological order
Input: sequence S :=

(a1
b1

)
, . . . ,

(an
bn

)

topological order v1 < v2, < · · · < vn
Task: Find a dag realization according to the given top. order

Greedy works (linear-time algorithm):

connect first non-source vertex vi with vertex degree
(ai
bi

)
with

the ai largest sources

reduce
(ai
bi

)
to
(0
bi

)
, and the source out-degrees by one →

yields new sequence S ′

we proved:
if and only if these steps fail, the sequence is not realizable

This shows: Hardness lies in finding a feasible topological order

c©2012 Berger and Müller-Hannemann MLU Halle-Wittenberg Dag Realization 7

Introduction

Overview: Our Contribution

deterministic randomized

polynomially solvable

(a feasible top. order

can be determined

efficiently) special strategy:

(linear−time heuristic)

lex−max strategy

opposed sequences

four different approaches

topological order

is chosen randomly

special classes:

recursive approach,

exponential time

algorithm

general realization

we made experiments for all these variants

experiments show: it is hard to find sequences which we
cannot solve in polynomial time

c©2012 Berger and Müller-Hannemann MLU Halle-Wittenberg Dag Realization 8

Opposed Sequences

Opposed Relation

Definition (opposed relation)

Given are c1 :=
(a1
b1

)
∈ Z2 and c2 :=

(a2
b2

)
∈ Z2. We define:

c1 ≤opp c2 ⇔ (a1 ≤ a2 ∧ b1 ≥ b2).

Opposed relation defines a partial order

1 reflexive, transitive and antisymmetric relation

2 it is not possible to compare all tuples c1 and c2.

Example:
(2

3

)
<opp

(3
1

)
but

(2
2

)
,
(3

3

)
are not comparable

c©2012 Berger and Müller-Hannemann MLU Halle-Wittenberg Dag Realization 9

Opposed Sequences

Opposed Relation

Definition (opposed relation)

Given are c1 :=
(a1
b1

)
∈ Z2 and c2 :=

(a2
b2

)
∈ Z2. We define:

c1 ≤opp c2 ⇔ (a1 ≤ a2 ∧ b1 ≥ b2).

Opposed relation defines a partial order

1 reflexive, transitive and antisymmetric relation

2 it is not possible to compare all tuples c1 and c2.

Example:
(2

3

)
<opp

(3
1

)
but

(2
2

)
,
(3

3

)
are not comparable

c©2012 Berger and Müller-Hannemann MLU Halle-Wittenberg Dag Realization 9

Opposed Sequences

Opposed Relation

Definition (opposed relation)

Given are c1 :=
(a1
b1

)
∈ Z2 and c2 :=

(a2
b2

)
∈ Z2. We define:

c1 ≤opp c2 ⇔ (a1 ≤ a2 ∧ b1 ≥ b2).

Opposed relation defines a partial order

1 reflexive, transitive and antisymmetric relation

2 it is not possible to compare all tuples c1 and c2.

Example:
(2

3

)
<opp

(3
1

)
but

(2
2

)
,
(3

3

)
are not comparable

c©2012 Berger and Müller-Hannemann MLU Halle-Wittenberg Dag Realization 9

Opposed Sequences

Opposed Sequences

Definition (opposed sequence)

We denote a sequence as opposed sequence, when it is possible to
number all tuples (except for “sinks” and “sources”) in a chain
such that we have

(ai
bi

)
≤opp

(ai+1
bi+1

)
.

Example:

(
0

2

)
,

(
0

1

)

︸ ︷︷ ︸
“sources”

,
(1

3

)
≤opp

(2
2

)
≤opp

(2
1

)
,

(
2

0

)
,

(
2

0

)

︸ ︷︷ ︸
“sinks′′

Note: It is possible to sort all tuples (except for “sinks” and
“sources”) so that we have ai ≤ ai+1 and bi ≥ bi+1 for all
indices i .

c©2012 Berger and Müller-Hannemann MLU Halle-Wittenberg Dag Realization 10

Opposed Sequences

Opposed Sequences

Definition (opposed sequence)

We denote a sequence as opposed sequence, when it is possible to
number all tuples (except for “sinks” and “sources”) in a chain
such that we have

(ai
bi

)
≤opp

(ai+1
bi+1

)
.

Example:

(
0

2

)
,

(
0

1

)

︸ ︷︷ ︸
“sources”

,
(1

3

)
≤opp

(2
2

)
≤opp

(2
1

)
,

(
2

0

)
,

(
2

0

)

︸ ︷︷ ︸
“sinks′′

Note: It is possible to sort all tuples (except for “sinks” and
“sources”) so that we have ai ≤ ai+1 and bi ≥ bi+1 for all
indices i .

c©2012 Berger and Müller-Hannemann MLU Halle-Wittenberg Dag Realization 10

Opposed Sequences

Realization of Opposed Sequences

We order an opposed sequence S containing at least one tuple (non-sink,
non-source) such that:

1 at the beginning all source tuples build a decreasing sequence with
respect to their bi ,

2 at the end all sink tuples build an increasing sequence with respect
to their ai ,

3 number all remaining tuples (non-sinks and non-sources) in a chain
such that we have

(
ai
bi

)
≤opp

(
ai+1

bi+1

)
, let

(aimin
bimin

)
be the first of them

Theorem (opposed sequences, FCT 2011)

An opposed sequence S is a dag sequence if and only if there exist at
least aimin source tuples in S and if
S ′ :=

(
0

b1−1

)
, . . . ,

(
0

baimin
−1

)
,
(

0
baimin

+1

)
, . . . ,

(
0

bimin−1

)
,
(

0
bimin

)
,
(aimin+1

bimin+1

)
, . . . ,

(
an
bn

)

is a dag sequence.

c©2012 Berger and Müller-Hannemann MLU Halle-Wittenberg Dag Realization 11

Opposed Sequences

Realization of Opposed Sequences

We order an opposed sequence S containing at least one tuple (non-sink,
non-source) such that:

1 at the beginning all source tuples build a decreasing sequence with
respect to their bi ,

2 at the end all sink tuples build an increasing sequence with respect
to their ai ,

3 number all remaining tuples (non-sinks and non-sources) in a chain
such that we have

(
ai
bi

)
≤opp

(
ai+1

bi+1

)
, let

(aimin
bimin

)
be the first of them

Theorem (opposed sequences, FCT 2011)

An opposed sequence S is a dag sequence if and only if there exist at
least aimin source tuples in S and if
S ′ :=

(
0

b1−1

)
, . . . ,

(
0

baimin
−1

)
,
(

0
baimin

+1

)
, . . . ,

(
0

bimin−1

)
,
(

0
bimin

)
,
(aimin+1

bimin+1

)
, . . . ,

(
an
bn

)

is a dag sequence.

c©2012 Berger and Müller-Hannemann MLU Halle-Wittenberg Dag Realization 11

Opposed Sequences

An Algorithmic Example

step 0
(0

2

)
,

(0
1

)
,

(2
3

)
,

(2
2

)
,

(2
1

)
,

(1
0

)
,

(2
0

)

step 1
(0

2−1

)
,
(0

1−1

)
,
(2−2

3

)
,

(2
2

)
,

(2
1

)
,

(1
0

)
,

(2
0

)

step 2
(0

1

)
, X

(0
3

)
,

(2
2

)
,

(2
1

)
,

(1
0

)
,

(2
0

)

step 3
(0

1−1

)
, X

(0
3−1

)
,
(2−2

2

)
,

(2
1

)
,

(1
0

)
,

(2
0

)

step 4 X X
(0

2

)
,

(0
2

)
,

(2
1

)
,

(1
0

)
,

(2
0

)

step 5 X X
(0

2−1

)
,
(0

2−1

)
,
(2−2

1

)
,

(1
0

)
,

(2
0

)

step 6 X X
(0

1

)
,

(0
1

)
,

(0
1

)
,

(1
0

)
,

(2
0

)

– source-sink-sequence!
We apply an algorithm for digraphs (Kleitman, Wang 1973):

step 7 X X X
(0

1

)
,

(0
1

)
,

(1
0

)
,

(1
0

)

step 8 X X X X
(0

1

)
, X

(1
0

)

Note: This algorithm can be implemented to run in time
O(m + n) using a “bucket” technique.

c©2012 Berger and Müller-Hannemann MLU Halle-Wittenberg Dag Realization 12

Opposed Sequences

An Algorithmic Example

step 0
(0

2

)
,

(0
1

)
,

(2
3

)
,

(2
2

)
,

(2
1

)
,

(1
0

)
,

(2
0

)

step 1
(0

2−1

)
,
(0

1−1

)
,
(2−2

3

)
,

(2
2

)
,

(2
1

)
,

(1
0

)
,

(2
0

)

step 2
(0

1

)
, X

(0
3

)
,

(2
2

)
,

(2
1

)
,

(1
0

)
,

(2
0

)

step 3
(0

1−1

)
, X

(0
3−1

)
,
(2−2

2

)
,

(2
1

)
,

(1
0

)
,

(2
0

)

step 4 X X
(0

2

)
,

(0
2

)
,

(2
1

)
,

(1
0

)
,

(2
0

)

step 5 X X
(0

2−1

)
,
(0

2−1

)
,
(2−2

1

)
,

(1
0

)
,

(2
0

)

step 6 X X
(0

1

)
,

(0
1

)
,

(0
1

)
,

(1
0

)
,

(2
0

)

– source-sink-sequence!
We apply an algorithm for digraphs (Kleitman, Wang 1973):

step 7 X X X
(0

1

)
,

(0
1

)
,

(1
0

)
,

(1
0

)

step 8 X X X X
(0

1

)
, X

(1
0

)

Note: This algorithm can be implemented to run in time
O(m + n) using a “bucket” technique.

c©2012 Berger and Müller-Hannemann MLU Halle-Wittenberg Dag Realization 12

Opposed Sequences

An Algorithmic Example

step 0
(0

2

)
,

(0
1

)
,

(2
3

)
,

(2
2

)
,

(2
1

)
,

(1
0

)
,

(2
0

)

step 1
(0

2−1

)
,
(0

1−1

)
,
(2−2

3

)
,

(2
2

)
,

(2
1

)
,

(1
0

)
,

(2
0

)

step 2
(0

1

)
, X

(0
3

)
,

(2
2

)
,

(2
1

)
,

(1
0

)
,

(2
0

)

step 3
(0

1−1

)
, X

(0
3−1

)
,
(2−2

2

)
,

(2
1

)
,

(1
0

)
,

(2
0

)

step 4 X X
(0

2

)
,

(0
2

)
,

(2
1

)
,

(1
0

)
,

(2
0

)

step 5 X X
(0

2−1

)
,
(0

2−1

)
,
(2−2

1

)
,

(1
0

)
,

(2
0

)

step 6 X X
(0

1

)
,

(0
1

)
,

(0
1

)
,

(1
0

)
,

(2
0

)

– source-sink-sequence!
We apply an algorithm for digraphs (Kleitman, Wang 1973):

step 7 X X X
(0

1

)
,

(0
1

)
,

(1
0

)
,

(1
0

)

step 8 X X X X
(0

1

)
, X

(1
0

)

Note: This algorithm can be implemented to run in time
O(m + n) using a “bucket” technique.

c©2012 Berger and Müller-Hannemann MLU Halle-Wittenberg Dag Realization 12

Opposed Sequences

An Algorithmic Example

step 0
(0

2

)
,

(0
1

)
,

(2
3

)
,

(2
2

)
,

(2
1

)
,

(1
0

)
,

(2
0

)

step 1
(0

2−1

)
,
(0

1−1

)
,
(2−2

3

)
,

(2
2

)
,

(2
1

)
,

(1
0

)
,

(2
0

)

step 2
(0

1

)
, X

(0
3

)
,

(2
2

)
,

(2
1

)
,

(1
0

)
,

(2
0

)

step 3
(0

1−1

)
, X

(0
3−1

)
,
(2−2

2

)
,

(2
1

)
,

(1
0

)
,

(2
0

)

step 4 X X
(0

2

)
,

(0
2

)
,

(2
1

)
,

(1
0

)
,

(2
0

)

step 5 X X
(0

2−1

)
,
(0

2−1

)
,
(2−2

1

)
,

(1
0

)
,

(2
0

)

step 6 X X
(0

1

)
,

(0
1

)
,

(0
1

)
,

(1
0

)
,

(2
0

)

– source-sink-sequence!
We apply an algorithm for digraphs (Kleitman, Wang 1973):

step 7 X X X
(0

1

)
,

(0
1

)
,

(1
0

)
,

(1
0

)

step 8 X X X X
(0

1

)
, X

(1
0

)

Note: This algorithm can be implemented to run in time
O(m + n) using a “bucket” technique.

c©2012 Berger and Müller-Hannemann MLU Halle-Wittenberg Dag Realization 12

Opposed Sequences

An Algorithmic Example

step 0
(0

2

)
,

(0
1

)
,

(2
3

)
,

(2
2

)
,

(2
1

)
,

(1
0

)
,

(2
0

)

step 1
(0

2−1

)
,
(0

1−1

)
,
(2−2

3

)
,

(2
2

)
,

(2
1

)
,

(1
0

)
,

(2
0

)

step 2
(0

1

)
, X

(0
3

)
,

(2
2

)
,

(2
1

)
,

(1
0

)
,

(2
0

)

step 3
(0

1−1

)
, X

(0
3−1

)
,
(2−2

2

)
,

(2
1

)
,

(1
0

)
,

(2
0

)

step 4 X X
(0

2

)
,

(0
2

)
,

(2
1

)
,

(1
0

)
,

(2
0

)

step 5 X X
(0

2−1

)
,
(0

2−1

)
,
(2−2

1

)
,

(1
0

)
,

(2
0

)

step 6 X X
(0

1

)
,

(0
1

)
,

(0
1

)
,

(1
0

)
,

(2
0

)

– source-sink-sequence!
We apply an algorithm for digraphs (Kleitman, Wang 1973):

step 7 X X X
(0

1

)
,

(0
1

)
,

(1
0

)
,

(1
0

)

step 8 X X X X
(0

1

)
, X

(1
0

)

Note: This algorithm can be implemented to run in time
O(m + n) using a “bucket” technique.

c©2012 Berger and Müller-Hannemann MLU Halle-Wittenberg Dag Realization 12

Opposed Sequences

An Algorithmic Example

step 0
(0

2

)
,

(0
1

)
,

(2
3

)
,

(2
2

)
,

(2
1

)
,

(1
0

)
,

(2
0

)

step 1
(0

2−1

)
,
(0

1−1

)
,
(2−2

3

)
,

(2
2

)
,

(2
1

)
,

(1
0

)
,

(2
0

)

step 2
(0

1

)
, X

(0
3

)
,

(2
2

)
,

(2
1

)
,

(1
0

)
,

(2
0

)

step 3
(0

1−1

)
, X

(0
3−1

)
,
(2−2

2

)
,

(2
1

)
,

(1
0

)
,

(2
0

)

step 4 X X
(0

2

)
,

(0
2

)
,

(2
1

)
,

(1
0

)
,

(2
0

)

step 5 X X
(0

2−1

)
,
(0

2−1

)
,
(2−2

1

)
,

(1
0

)
,

(2
0

)

step 6 X X
(0

1

)
,

(0
1

)
,

(0
1

)
,

(1
0

)
,

(2
0

)

– source-sink-sequence!
We apply an algorithm for digraphs (Kleitman, Wang 1973):

step 7 X X X
(0

1

)
,

(0
1

)
,

(1
0

)
,

(1
0

)

step 8 X X X X
(0

1

)
, X

(1
0

)

Note: This algorithm can be implemented to run in time
O(m + n) using a “bucket” technique.

c©2012 Berger and Müller-Hannemann MLU Halle-Wittenberg Dag Realization 12

Opposed Sequences

An Algorithmic Example

step 0
(0

2

)
,

(0
1

)
,

(2
3

)
,

(2
2

)
,

(2
1

)
,

(1
0

)
,

(2
0

)

step 1
(0

2−1

)
,
(0

1−1

)
,
(2−2

3

)
,

(2
2

)
,

(2
1

)
,

(1
0

)
,

(2
0

)

step 2
(0

1

)
, X

(0
3

)
,

(2
2

)
,

(2
1

)
,

(1
0

)
,

(2
0

)

step 3
(0

1−1

)
, X

(0
3−1

)
,
(2−2

2

)
,

(2
1

)
,

(1
0

)
,

(2
0

)

step 4 X X
(0

2

)
,

(0
2

)
,

(2
1

)
,

(1
0

)
,

(2
0

)

step 5 X X
(0

2−1

)
,
(0

2−1

)
,
(2−2

1

)
,

(1
0

)
,

(2
0

)

step 6 X X
(0

1

)
,

(0
1

)
,

(0
1

)
,

(1
0

)
,

(2
0

)

– source-sink-sequence!
We apply an algorithm for digraphs (Kleitman, Wang 1973):

step 7 X X X
(0

1

)
,

(0
1

)
,

(1
0

)
,

(1
0

)

step 8 X X X X
(0

1

)
, X

(1
0

)

Note: This algorithm can be implemented to run in time
O(m + n) using a “bucket” technique.

c©2012 Berger and Müller-Hannemann MLU Halle-Wittenberg Dag Realization 12

Opposed Sequences

An Algorithmic Example

step 0
(0

2

)
,

(0
1

)
,

(2
3

)
,

(2
2

)
,

(2
1

)
,

(1
0

)
,

(2
0

)

step 1
(0

2−1

)
,
(0

1−1

)
,
(2−2

3

)
,

(2
2

)
,

(2
1

)
,

(1
0

)
,

(2
0

)

step 2
(0

1

)
, X

(0
3

)
,

(2
2

)
,

(2
1

)
,

(1
0

)
,

(2
0

)

step 3
(0

1−1

)
, X

(0
3−1

)
,
(2−2

2

)
,

(2
1

)
,

(1
0

)
,

(2
0

)

step 4 X X
(0

2

)
,

(0
2

)
,

(2
1

)
,

(1
0

)
,

(2
0

)

step 5 X X
(0

2−1

)
,
(0

2−1

)
,
(2−2

1

)
,

(1
0

)
,

(2
0

)

step 6 X X
(0

1

)
,

(0
1

)
,

(0
1

)
,

(1
0

)
,

(2
0

)

– source-sink-sequence!
We apply an algorithm for digraphs (Kleitman, Wang 1973):

step 7 X X X
(0

1

)
,

(0
1

)
,

(1
0

)
,

(1
0

)

step 8 X X X X
(0

1

)
, X

(1
0

)

Note: This algorithm can be implemented to run in time
O(m + n) using a “bucket” technique.

c©2012 Berger and Müller-Hannemann MLU Halle-Wittenberg Dag Realization 12

Opposed Sequences

An Algorithmic Example

step 0
(0

2

)
,

(0
1

)
,

(2
3

)
,

(2
2

)
,

(2
1

)
,

(1
0

)
,

(2
0

)

step 1
(0

2−1

)
,
(0

1−1

)
,
(2−2

3

)
,

(2
2

)
,

(2
1

)
,

(1
0

)
,

(2
0

)

step 2
(0

1

)
, X

(0
3

)
,

(2
2

)
,

(2
1

)
,

(1
0

)
,

(2
0

)

step 3
(0

1−1

)
, X

(0
3−1

)
,
(2−2

2

)
,

(2
1

)
,

(1
0

)
,

(2
0

)

step 4 X X
(0

2

)
,

(0
2

)
,

(2
1

)
,

(1
0

)
,

(2
0

)

step 5 X X
(0

2−1

)
,
(0

2−1

)
,
(2−2

1

)
,

(1
0

)
,

(2
0

)

step 6 X X
(0

1

)
,

(0
1

)
,

(0
1

)
,

(1
0

)
,

(2
0

)

– source-sink-sequence!
We apply an algorithm for digraphs (Kleitman, Wang 1973):

step 7 X X X
(0

1

)
,

(0
1

)
,

(1
0

)
,

(1
0

)

step 8 X X X X
(0

1

)
, X

(1
0

)

Note: This algorithm can be implemented to run in time
O(m + n) using a “bucket” technique.

c©2012 Berger and Müller-Hannemann MLU Halle-Wittenberg Dag Realization 12

Opposed Sequences

An Algorithmic Example

step 0
(0

2

)
,

(0
1

)
,

(2
3

)
,

(2
2

)
,

(2
1

)
,

(1
0

)
,

(2
0

)

step 1
(0

2−1

)
,
(0

1−1

)
,
(2−2

3

)
,

(2
2

)
,

(2
1

)
,

(1
0

)
,

(2
0

)

step 2
(0

1

)
, X

(0
3

)
,

(2
2

)
,

(2
1

)
,

(1
0

)
,

(2
0

)

step 3
(0

1−1

)
, X

(0
3−1

)
,
(2−2

2

)
,

(2
1

)
,

(1
0

)
,

(2
0

)

step 4 X X
(0

2

)
,

(0
2

)
,

(2
1

)
,

(1
0

)
,

(2
0

)

step 5 X X
(0

2−1

)
,
(0

2−1

)
,
(2−2

1

)
,

(1
0

)
,

(2
0

)

step 6 X X
(0

1

)
,

(0
1

)
,

(0
1

)
,

(1
0

)
,

(2
0

)

– source-sink-sequence!
We apply an algorithm for digraphs (Kleitman, Wang 1973):

step 7 X X X
(0

1

)
,

(0
1

)
,

(1
0

)
,

(1
0

)

step 8 X X X X
(0

1

)
, X

(1
0

)

Note: This algorithm can be implemented to run in time
O(m + n) using a “bucket” technique.

c©2012 Berger and Müller-Hannemann MLU Halle-Wittenberg Dag Realization 12

Our Realization Algorithm

General Realization Algorithm

We order a sequence S containing at least one stream tuple such that:

1 at the beginning all source tuples, say q many, build a decreasing
sequence with respect to their bi ,

2 at the end all sink tuples build an increasing sequence with respect
to their ai ,

candidate set Vmin: all stream tuples which satisfy

1 ai ≤ q (indegree does not exceed # available sources) and

2 there does not exist a smaller stream tuple with respect to the opposed
relation <opp.

Theorem (FCT 2011)

S is a dag sequence if and only if Vmin 6= ∅ and there exists an element(aimin
bimin

)
∈ Vmin such that S ′ :=(

0
b1−1

)
, . . . ,

(
0

baimin
−1

)
,
(

0
baimin

+1

)
, . . . ,

(
0
bq

)
,
(aq+1
bq+1

)
, . . . ,

(aimin−1

bimin−1

)
,
(

0
bimin

)
,
(aimin+1

bimin+1

)
, . . . ,

(
an
bn

)
is a dag sequence.

c©2012 Berger and Müller-Hannemann MLU Halle-Wittenberg Dag Realization 13

Our Realization Algorithm

General Realization Algorithm

We order a sequence S containing at least one stream tuple such that:

1 at the beginning all source tuples, say q many, build a decreasing
sequence with respect to their bi ,

2 at the end all sink tuples build an increasing sequence with respect
to their ai ,

candidate set Vmin: all stream tuples which satisfy

1 ai ≤ q (indegree does not exceed # available sources) and

2 there does not exist a smaller stream tuple with respect to the opposed
relation <opp.

Theorem (FCT 2011)

S is a dag sequence if and only if Vmin 6= ∅ and there exists an element(aimin
bimin

)
∈ Vmin such that S ′ :=(

0
b1−1

)
, . . . ,

(
0

baimin
−1

)
,
(

0
baimin

+1

)
, . . . ,

(
0
bq

)
,
(aq+1
bq+1

)
, . . . ,

(aimin−1

bimin−1

)
,
(

0
bimin

)
,
(aimin+1

bimin+1

)
, . . . ,

(
an
bn

)
is a dag sequence.

c©2012 Berger and Müller-Hannemann MLU Halle-Wittenberg Dag Realization 13

Our Realization Algorithm

Example: Recursion Tree

S′ =
(0
2

)
,×,

(1
2

)
,
(0
3

)
,
(4
4

)
,
(1
1

)
,
(1
0

)
,
(2
0

)
,
(3
0

)
S′ =

(0
2

)
,
(0
1

)
,
(0
2

)
,
(2
3

)
,
(4
4

)
,
(1
1

)
,
(1
0

)
,
(2
0

)
,
(3
0

)

S′′ =
(0
2

)
,×,

(0
2

)
,
(0
2

)
,
(4
4

)
,
(1
1

)
,
(1
0

)
,
(2
0

)
,
(3
0

)
S′′ =

(0
1

)
,
(0
1

)
,
(0
2

)
,
(2
3

)
,
(4
4

)
,
(0
1

)
,
(1
0

)
,
(2
0

)
,
(3
0

)
S′′ =

(0
1

)
,
(0
1

)
,
(0
1

)
,
(0
3

)
,
(4
4

)
,
(1
1

)
,
(1
0

)
,
(2
0

)
,
(3
0

)

S′′′ = ×,
(0
1

)
,
(0
1

)
,
(0
3

)
,
(4
4

)
,
(0
1

)
,
(1
0

)
,
(2
0

)
,
(3
0

)
S′′′ =

(0
1

)
,
(0
1

)
,
(0
1

)
,
(0
2

)
,
(4
4

)
,
(0
1

)
,
(1
0

)
,
(2
0

)
,
(3
0

)
S′′′ = ×,×,×,

(0
2

)
,
(0
4

)
,
(1
1

)
,
(1
0

)
,
(2
0

)
,
(3
0

)
S′′′ =

(0
1

)
,×,

(0
2

)
,
(0
2

)
,
(4
4

)
,
(0
1

)
,
(1
0

)
,
(2
0

)
,
(3
0

)

S =
(0
3

)
,
(0
1

)
,
(1
2

)
,
(2
3

)
,
(4
4

)
,
(1
1

)
,
(1
0

)
,
(2
0

)
,
(3
0

)

(
1
2

) (
2
3

)

(
1
1

) (
2
3

) (
1
2

)

(
2
3

) (
1
1

) (
4
4

) (
1
1

)

(
4
4

) (
4
4

) (
1
1

) (
4
4

)

V ′
min = {

(
1
2

)
,
(
2
3

)
}

V ′
min = {

(
1
1

)
,
(
2
3

)
}

V ′
min = {

(
1
2

)
}

V ′
min = {

(
2
3

)
}

V ′
min = {

(
1
1

)
,
(
4
4

)
}

V ′
min = {

(
1
1

)
}

V ′
min = {

(
4
4

)
} V ′

min = {
(
4
4

)
} V ′

min = {
(
1
1

)
} V ′

min = {
(
4
4

)
}

not realizable not realizable not realizable

realizable

S′′′′ = ×,×,×,
(0
2

)
,
(0
4

)
,×,

(1
0

)
,
(2
0

)
,
(3
0

)
S′′′′ = ×,×,×,

(0
1

)
,
(0
4

)
,
(0
1

)
,
(1
0

)
,
(2
0

)
,
(3
0

)
S′′′′ = ×,×,×,

(0
2

)
,
(0
3

)
,
(0
1

)
,
(1
0

)
,
(2
0

)
,
(3
0

)
S′′′′ = ×,×,

(0
1

)
,
(0
1

)
,
(0
4

)
,×,

(1
0

)
,
(2
0

)
,
(3
0

)

×,×,×,
(
0
2

)
,×,

(
0
1

)
,×,

(
1
0

)
,
(
2
0

)

×,×,×,×,×,
(
0
1

)
,×,×,

(
1
0

)

c©2012 Berger and Müller-Hannemann MLU Halle-Wittenberg Dag Realization 14

Our Realization Algorithm

Lex Max Strategy

Observations:

1 bottleneck is the cardinality of Vmin

2 for opposed sequences we have a smallest tuple resulting in
|Vmin| = 1

“lex max strategy”:
choose always the lexicographical largest tuple in Vmin

Early conjecture:
Lex max strategy works

c©2012 Berger and Müller-Hannemann MLU Halle-Wittenberg Dag Realization 15

Our Realization Algorithm

Story of the Lex Max Strategy
And Why We Became Curious

Note: when we started our work, the complexity status of dag
realization was still open

Initial experiments:

1 we generated two million dag sequences randomly (for various
sequence sizes)

2 observed success in each case for the lex max strategy

But: When we tried to prove “correctness” of the strategy, we
finally managed to construct counter-example(s)

Lesson:
randomly generated instances turn out to be easy instances

c©2012 Berger and Müller-Hannemann MLU Halle-Wittenberg Dag Realization 16

Our Realization Algorithm

Story of the Lex Max Strategy
And Why We Became Curious

Note: when we started our work, the complexity status of dag
realization was still open

Initial experiments:

1 we generated two million dag sequences randomly (for various
sequence sizes)

2 observed success in each case for the lex max strategy

But: When we tried to prove “correctness” of the strategy, we
finally managed to construct counter-example(s)

Lesson:
randomly generated instances turn out to be easy instances

c©2012 Berger and Müller-Hannemann MLU Halle-Wittenberg Dag Realization 16

Experiments

Three Types of Test Instances

1 generation of “random sequences”

sample uniformly dags with n vertices and m arcs
take the corresponding dag sequence

Note: We sample uniformly dags, but not sequences.

2 systematic generation of dag sequences

generate all non-isomorphic dag sequences with 7, 8, 9 tuples
Note: this is infeasible for n ≥ 10!
Ignore all “trivial sequences” (with ≤ 1 stream tuples)

3 degree sequences derived from real-world dags

c©2012 Berger and Müller-Hannemann MLU Halle-Wittenberg Dag Realization 17

Experiments

Three Types of Test Instances

1 generation of “random sequences”

sample uniformly dags with n vertices and m arcs
take the corresponding dag sequence

Note: We sample uniformly dags, but not sequences.

2 systematic generation of dag sequences

generate all non-isomorphic dag sequences with 7, 8, 9 tuples
Note: this is infeasible for n ≥ 10!
Ignore all “trivial sequences” (with ≤ 1 stream tuples)

3 degree sequences derived from real-world dags

c©2012 Berger and Müller-Hannemann MLU Halle-Wittenberg Dag Realization 17

Experiments

Three Types of Test Instances

1 generation of “random sequences”

sample uniformly dags with n vertices and m arcs
take the corresponding dag sequence

Note: We sample uniformly dags, but not sequences.

2 systematic generation of dag sequences

generate all non-isomorphic dag sequences with 7, 8, 9 tuples
Note: this is infeasible for n ≥ 10!
Ignore all “trivial sequences” (with ≤ 1 stream tuples)

3 degree sequences derived from real-world dags

c©2012 Berger and Müller-Hannemann MLU Halle-Wittenberg Dag Realization 17

Experiments

Experiments I

First questions:

1 How relevant are opposed sequences?

2 How large is the fraction of dag sequences which are realizable
by using the lex max strategy?

3 How difficult are degree sequences derived from real-world
dags?

c©2012 Berger and Müller-Hannemann MLU Halle-Wittenberg Dag Realization 18

Experiments

Acyclic Real World Networks

We considered:

1 OBDDs (ordered binary decision
diagrams)

2 public train transport schedule
(20000 tuples)

3 flight schedules (37800 tuples)

4 several food webs (40 to 150
tuples)

Our observations: All instances are realizable by the lex max
strategy.

c©2012 Berger and Müller-Hannemann MLU Halle-Wittenberg Dag Realization 19

Experiments

Opposed Sequences

Which fraction of sequences are opposed sequences?

Observations

1 sequences with a middle
density have the smallest
fraction of opposed
sequences

2 opposed sequences are a
relevant class of sequences

0 5 10 15 20 25 30 35 40

0

0,2

0,4

0,6

0,8

1

1,2

Fraction of opposed sequences

n=9

number m of arcs

fr
ac

tio
n

of
 o

pp
os

ed
 s

eq
ue

nc
es

Note: OBDDs (ordered binary decision diagrams) are dags with
opposed dag sequences.

c©2012 Berger and Müller-Hannemann MLU Halle-Wittenberg Dag Realization 20

Experiments

Opposed Sequences

Which fraction of sequences are opposed sequences?

Observations

1 sequences with a middle
density have the smallest
fraction of opposed
sequences

2 opposed sequences are a
relevant class of sequences

0 5 10 15 20 25 30 35 40

0

0,2

0,4

0,6

0,8

1

1,2

Fraction of opposed sequences

n=9

number m of arcs

fr
ac

tio
n

of
 o

pp
os

ed
 s

eq
ue

nc
es

Note: OBDDs (ordered binary decision diagrams) are dags with
opposed dag sequences.

c©2012 Berger and Müller-Hannemann MLU Halle-Wittenberg Dag Realization 20

Experiments

Lex Max Strategy

How often does the lex max strategy fail?

Observation

1 lex max strategy leads to a
dag realization for at least
97% of all dag sequences
with 9 tuples

2 a strong connection between
the density of a sequence
and the realizability

0 5 10 15 20 25 30 35 40
0

0,5

1

1,5

2

2,5

3

3,5

Percentage of failure sequences n=9

Lexmax Strategy

number m of arcs

P
er

ce
nt

ag
e

p(
m

)
of

 f
ai

lu
re

 s
eq

ue
nc

es

But: This result does not explain our observation at the beginning
– “success for 2 million randomly chosen dag sequences” with
≥ 20 tuples.

c©2012 Berger and Müller-Hannemann MLU Halle-Wittenberg Dag Realization 21

Experiments

Lex Max Strategy

How often does the lex max strategy fail?

Observation

1 lex max strategy leads to a
dag realization for at least
97% of all dag sequences
with 9 tuples

2 a strong connection between
the density of a sequence
and the realizability

0 5 10 15 20 25 30 35 40
0

0,5

1

1,5

2

2,5

3

3,5

Percentage of failure sequences n=9

Lexmax Strategy

number m of arcs

P
er

ce
nt

ag
e

p(
m

)
of

 f
ai

lu
re

 s
eq

ue
nc

es

But: This result does not explain our observation at the beginning
– “success for 2 million randomly chosen dag sequences” with
≥ 20 tuples.

c©2012 Berger and Müller-Hannemann MLU Halle-Wittenberg Dag Realization 21

Experiments

Distance to Opposed

opposed sequences are efficiently solvable

would like to have a measure:
how similar is a sequence to being an opposed sequence?

distance to opposed = # pairwise incomparable stream tuples
with respect to some specific order

d(S) :=

∣∣∣∣∣
{((

ai
bi

)
,

(
aj
bj

))
|

(
ai
bi

)
,

(
aj
bj

)
incomparable stream tuples
w.r.t. ≤opp and i < j

}∣∣∣∣∣ .

c©2012 Berger and Müller-Hannemann MLU Halle-Wittenberg Dag Realization 22

Experiments

Distance to Opposed

Question: Do randomly generated sequences possess a
preference to a “small” distance to opposed in comparison
with systematically generated sequences?

p
er

ce
n

ta
g

e
o

f
sy

st
em

a
ti

ca
ll

y
 g

en
er

a
te

d
 s

eq
u

en
ce

s

42 860 10 12 14 16
0

10

20

30

40

50

60

70

80

90

difference d to opposed
number of arcs m

 from 9 to 35

number m of arcs fr
om 9 to 35

p
er

ce
n

ta
g
e

o
f

ra
n

d
o
m

ly
 g

en
er

a
te

d
 s

eq
u

en
ce

s
2 4 6 8 10 12 140

0

10

100

90

80

70

60

50

40

30

20

difference d to opposed

Systematic vs. randomized generation of sequences

YES, there is a clear bias towards smaller distance to opposed for
random instances.

c©2012 Berger and Müller-Hannemann MLU Halle-Wittenberg Dag Realization 23

Experiments

Distance to Opposed

Question: Do non-lexmax sequences possess a preference for
large opposed distances?

difference d to opposed

density
 m from 9 to 35

fr
a

ct
io

n
 o

f
n

o
n

−
le

x
m

a
x

 s
eq

u
en

ce
s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1514131211109876543210

c©2012 Berger and Müller-Hannemann MLU Halle-Wittenberg Dag Realization 24

Experiments

Back to Theory

Observation: very sparse instances (m < n) “forest dags” are
always solvable by lex max strategy

Is there a theoretical explanation?

Yes, and even more: every choice of a tuple in Vmin provably works!

Theorem (Realization of forest dags in linear time)

Let S :=
(
a1
b1

)
, . . . ,

(
an
bn

)
with

∑n
i=1 ai ≤ n − 1 be a canonically sorted sequence

containing k > 0 source tuples. Furthermore, we assume that S is not a
source-sink-sequence. Consider an arbitrary stream tuple

(
ai
bi

)
with ai ≤ k.

S is a dag sequence if and only if

S′ :=

(
0

b1 − 1

)
, . . . ,

(
0

bai − 1

)
,

(
0

bai +1

)
, . . . ,

(
0

bk

)
, . . . ,

(
ai−1

bi−1

)
,

(
0

bi

)
,

(
ai+1

bi+1

)
, . . . ,

(
an

bn

)

is a dag sequence.

c©2012 Berger and Müller-Hannemann MLU Halle-Wittenberg Dag Realization 25

Experiments

Back to Theory

Observation: very sparse instances (m < n) “forest dags” are
always solvable by lex max strategy

Is there a theoretical explanation?

Yes, and even more: every choice of a tuple in Vmin provably works!

Theorem (Realization of forest dags in linear time)

Let S :=
(
a1
b1

)
, . . . ,

(
an
bn

)
with

∑n
i=1 ai ≤ n − 1 be a canonically sorted sequence

containing k > 0 source tuples. Furthermore, we assume that S is not a
source-sink-sequence. Consider an arbitrary stream tuple

(
ai
bi

)
with ai ≤ k.

S is a dag sequence if and only if

S′ :=

(
0

b1 − 1

)
, . . . ,

(
0

bai − 1

)
,

(
0

bai +1

)
, . . . ,

(
0

bk

)
, . . . ,

(
ai−1

bi−1

)
,

(
0

bi

)
,

(
ai+1

bi+1

)
, . . . ,

(
an

bn

)

is a dag sequence.

c©2012 Berger and Müller-Hannemann MLU Halle-Wittenberg Dag Realization 25

Randomized Strategies

Randomized Strategy I (Rand I)

Rand I:

1 choose a random permutation of the (stream) tuples

2 apply the linear-time realization algorithm
for prescribed topological orders

Note:

considers all permutations of stream tuples

has a high probability to fail

c©2012 Berger and Müller-Hannemann MLU Halle-Wittenberg Dag Realization 26

Randomized Strategies

Rand II: Exploit Necessary Conditions

Let S be a dag sequence with n tuples.

q — number of source tuples in S
s — number of sink tuples in S

Lemma (necessary criterion for the realizability of dag sequences)

If a stream tuple
(a
b

)
occurs at position i in a topological order of a

dag realization, then it follows that

a ≤ min{n − s, i − 1}

and
b ≤ min{n − q, n − i}.

Our task: Find a topological order which fulfills these conditions
for all stream tuples simultaneously.

c©2012 Berger and Müller-Hannemann MLU Halle-Wittenberg Dag Realization 27

Randomized Strategies

Rand II: Exploit Necessary Conditions

Reformulation as a perfect matching problem in a bipartite
graph (the so-called bounding graph)

Example: sequence S :=
(0

3

)
,
(0

1

)
,
(1

2

)
,
(2

3

)
,
(4

4

)
,
(1

1

)
,
(1

0

)
,
(2

0

)
,
(3

0

)

bounds for po-
sitions 3 to 6

2

6

5

3

4

4

3

5
1

1

4

4

3

2

2

1

WV
S S

stream tuples
of S

c©2012 Berger and Müller-Hannemann MLU Halle-Wittenberg Dag Realization 28

Randomized Strategies

Randomized Strategy II (Rand II)

Rand II:

1 choose a random perfect matching in the bounding graph

2 let P be the corresponding permutation of tuples

3 apply a linear-time realization algorithm
(subject to the fixed permutation P)

Note: a random perfect matching can be determined in
polynomial time, O(n8(n log n + log 1

ε) log 1
ε), ε denotes deviation

from uniform distribution
(Jerrum, Sinclair and Vigoda, 2004)

in our experiments:
we compute the average running time over all perfect matchings

c©2012 Berger and Müller-Hannemann MLU Halle-Wittenberg Dag Realization 29

Randomized Strategies

Randomized Strategies III and IV

Rand III:

recall our recursive approach:
if the sequence is realizable, then the set Vmin contains at
least one element by which we can reduce the sequence

our general realization algorithm branches over all elements of
Vmin

instead of branching, we sample the next stream tuple
uniformly at random from the set Vmin

Rand IV:

combine Rand III with reduction rules

for details see full paper

c©2012 Berger and Müller-Hannemann MLU Halle-Wittenberg Dag Realization 30

Randomized Strategies

Success Probability of the
Randomized Strategies

All non-trivial sequences on 9 tuples:

5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Rand I
Rand II
Rand III
Rand IV
fraction of lexmax
sequences

number of arcs m

s
u

c
c

e
s

s
 p

ro
b

a
b

ili
ty

 p
(m

)

c©2012 Berger and Müller-Hannemann MLU Halle-Wittenberg Dag Realization 31

Randomized Strategies

Success Probability of the
Randomized Strategies

Restriction to non-reducible, non-lexmax sequences of 9 tuples:

5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0

0.1

0.2

0.3

0.4

0.5

0.6

Rand I
Rand II
Rand III
Rand IV
% non-reducible
non-lexmax
sequences

number of arcs m

s
u

c
c

e
s

s
 p

ro
b

a
b

ili
ty

 p
(m

)
fo

r
o

n
e

 t
ri

a
l

p
e

rc
e

n
ta

g
e

n

o
n

-r
e

d
u

c
a

b
le

n

o
n

-l
e

x
m

a
x

 s
e

q
.

c©2012 Berger and Müller-Hannemann MLU Halle-Wittenberg Dag Realization 32

Summary

Summary: Our Contribution

deterministic randomized

polynomially solvable

(a feasible top. order

can be determined

efficiently) special strategy:

(linear−time heuristic)

lex−max strategy

opposed sequences

four different approaches

topological order

is chosen randomly

special classes:

recursive approach,

exponential time

algorithm

general realization

lex max strategy and RAND IV are remarkably successful

all real-world instances solved easily in linear time

c©2012 Berger and Müller-Hannemann MLU Halle-Wittenberg Dag Realization 33

Summary

Future Work

To do:

characterize the class of instances for which the lex max
strategy works provably correct

identify other classes of instances which allow polynomial-time
algorithms

provide a theoretical analysis of the randomized approaches

c©2012 Berger and Müller-Hannemann MLU Halle-Wittenberg Dag Realization 34

c©2012 Berger and Müller-Hannemann MLU Halle-Wittenberg Dag Realization 35

	Introduction
	Opposed Sequences
	Our Realization Algorithm
	Experiments
	Randomized Strategies
	Summary

