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The Dag Realization Problem

Problem (dag realization problem)

Given is a finite sequence S := (3!),. .., (3) with a;, bi € Zg .
Does there exist a dag (acyclic digraph without parallel arcs)

G = (V, A) with the labeled vertex set V := {vi,...,vp} such
that we have indegree dz (v;) = a; and outdegree d(v;) = b; for
all vie V?

(©2012 Berger and Miiller-Hannemann MLU Halle-Wittenberg Dag Realization



Introduction

The Dag Realization Problem

Problem (dag realization problem)

Given is a finite sequence S := (3!),. .., (3) with a;, bi € Zg .
Does there exist a dag (acyclic digraph without parallel arcs)

G = (V, A) with the labeled vertex set V := {vi,...,vp} such
that we have indegree dz (v;) = a; and outdegree d(v;) = b; for
all vie V?

In case the answer is “yes" we call
@ sequence S dag sequence

o dag G a dag realization
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The Dag Realization Problem — an Example

)0

@ Given is a sequence

(), @) (): () () ). )

Find an acyclic digraph with corresponding vertex degrees.
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Introduction

Terminology

e . aj
Classification of tuples (7')
@ source tuple: a; =0 and b; >0
@ sink tuple: a; > 0 and b; =0
@ stream tuple: a; > 0 and b; >0

Assumptions:
@ no zero tuples (8)

e > 7 ,aj =Y i, bj (necessary for realization)
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Digraph Realization is Easy

Problem (digraph realization problem)

Given is a finite sequence S := (Zi), e, (Z:) with a;, b € Z .
Does there exist a digraph (without parallel arcs) G = (V, A) with
the labeled vertex set V := {v1,..., vy} such that we have

indegree d (v;) = a; and outdegree d (v;) = b; for all v € V?
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Introduction

Digraph Realization is Easy

Problem (digraph realization problem)

Given is a finite sequence S := (Zi), e, (z:) with a;, b € Z .
Does there exist a digraph (without parallel arcs) G = (V, A) with
the labeled vertex set V := {v1,..., vy} such that we have

indegree d (v;) = a; and outdegree d (v;) = b; for all v € V?

Two different approaches with polynomial running time:
@ recursive algorithms (KLEITMAN, WANG 1973) — choose an

arbitrary tuple (Z{) and reduce from b; lexicographical largest

tuples the aj by “one”
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Introduction

Digraph Realization is Easy

Problem (digraph realization problem)

Given is a finite sequence S := (Zi), e, (z:) with a;, b € Z .
Does there exist a digraph (without parallel arcs) G = (V, A) with
the labeled vertex set V := {v1,..., vy} such that we have

indegree d (v;) = a; and outdegree d (v;) = b; for all v € V?

Two different approaches with polynomial running time:
@ recursive algorithms (KLEITMAN, WANG 1973) — choose an

arbitrary tuple (Z{) and reduce from b; lexicographical largest

tuples the aj by “one”

@ complete characterization of digraph sequences (GALE 1957,
RYSER 1957, FULKERSON 1960, CHEN 1966) — check a
polynomial number of inequalities (in the size n)
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Introduction

Complexity of Dag Realization

Theorem (Nichterlein 2011)
The dag realization problem is (strongly) NP-complete.

Proof: by reduction from 3-PARTITION
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Introduction

Complexity of Dag Realization

Theorem (Nichterlein 2011)
The dag realization problem is (strongly) NP-complete.

Proof: by reduction from 3-PARTITION

Theorem (Hartung and Nichterlein 2012)

The dag realization problem is fixed parameter tractable with
respect to the parameter maximum degree A.

Note: This is a mere classification result. The running time of
0(8)

their FPT algorithm is ALY - n!

Dag Realization (9
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Introduction

Realization with a Fixed Topological Order

Realization with a prescribed topological order
Input: sequence S = (Zi), el (Z:)
topological order vi < vp, < -++ < v,
Task: Find a dag realization according to the given top. order

Greedy works (linear-time algorithm):

@ connect first non-source vertex v; with vertex degree (Z{) with
the a; largest sources

@ reduce (Z{) to (2,), and the source out-degrees by one —

yields new sequence S’

@ we proved:
if and only if these steps fail, the sequence is not realizable

This shows: Hardness lies in finding a feasible topological order

(©2012 Berger and Miiller-Hannemann MLU Halle-Wittenberg Dag Realization
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Introduction

Overview: Our Contribution

deterministic

polynomially solvable
special classes:

opposed sequences
(a feasible top. order

can be determined
efficiently)

general realization
algorithm

recursive approach,
exponential time

randomized

four different approaches

topological order
is chosen randomly

special strategy:
lex—max strategy
(linear—time heuristic)

@ we made experiments for all these variants

@ experiments show: it is hard to find sequences which we
cannot solve in polynomial time

(©2012 Berger and Miiller-Hannemann
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Opposed Sequences

Opposed Relation

Definition (opposed relation)

Given are ¢; = (Zi) €7? and ¢ 1= (Zi) € Z?. We define:
c1 <opp @ & (a1 < a2 A by > by).
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Opposed Sequences

Opposed Relation

Definition (opposed relation)

Given are ¢; = (Zi) €7? and ¢ 1= (Zi) € Z?. We define:
c1 <opp @ & (a1 < a2 A by > by).

Opposed relation defines a partial order
Q reflexive, transitive and antisymmetric relation

@ it is not possible to compare all tuples ¢; and cp.
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Opposed Sequences

Opposed Relation

Definition (opposed relation)

Given are ¢; = (Zi) €7? and ¢ 1= (Zi) € Z?. We define:
c1 <opp @ & (a1 < a2 A by > by).

Opposed relation defines a partial order
Q reflexive, transitive and antisymmetric relation

@ it is not possible to compare all tuples ¢; and cp.

Example: (3) <opp (3) but (5), (3) are not comparable
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Opposed Sequences

Opposed Sequences

Definition (opposed sequence)
We denote a sequence as opposed sequence, when it is possible to
number all tuples (except for “sinks” and “sources”) in a chain

such that we have (Z) <opp (z:ﬁ)
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Opposed Sequences

Opposed Sequences

Definition (opposed sequence)

We denote a sequence as opposed sequence, when it is possible to
number all tuples (except for “sinks” and “sources”) in a chain
such that we have (7)) <opp (7).

bit1
0 0 2 2
Example: <2>, (1), (;) opp (g) <opp (5)7 <0>’ <0>

Note: It is possible to sort all tuples (except for “sinks” and
“sources” ) so that we have a; < a;11 and b; > bj41 for all
indices i.
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Opposed Sequences

Realization of Opposed Sequences

We order an opposed sequence S containing at least one tuple (non-sink,
non-source) such that:

@ at the beginning all source tuples build a decreasing sequence with
respect to their b;,

@ at the end all sink tuples build an increasing sequence with respect
to their a;,

© number all remaining tuples (non-sinks and non-sources) in a chain
such that we have (Zf) <opp (a’ 1) let ( ’mm) be the first of them

+1 "min
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Opposed Sequences

Realization of Opposed Sequences

We order an opposed sequence S containing at least one tuple (non-sink,
non-source) such that:

@ at the beginning all source tuples build a decreasing sequence with
respect to their b;,

@ at the end all sink tuples build an increasing sequence with respect
to their a;,

© number all remaining tuples (non-sinks and non-sources) in a chain
such that we have (Zf) <opp (a’ 1) let ( ’mm) be the first of them

+1 "min

Theorem (opposed sequences, FCT 2011)

An opposed sequence S is a dag sequence if and only if there exist at
least a; , source tuples in S and if
0 Aimin an
N ARN e )

§hi= (blo— ) ooog (bafmf:—l)’ (ba,.:nﬂ)v acoq (b- F) i

is a dag sequence.
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Opposed Sequences

An Algorithmic Example

step 0 (9),
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Opposed Sequences

An Algorithmic Example
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Opposed Sequences

An Algorithmic Example

(©2012 Berger and Miiller-Hannemann MLU Halle-Wittenberg Dag Realization 12



Opposed Sequences

An Algorithmic Example

step0 (), (). (B G G
step 1 (291)' (191)' (252)' @) (?
sep2 (1), X (). ()
sep3 (7)., X (%), (5) G

S— N N

NN N N

OO OO

S— N N

O NONONON
— — — —

o~~~
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Opposed Sequences

An Algorithmic Example

step 0 (5), (7).
step 1 (291)' (10
step 2 ((1))
step 3 (191
step 4 X

PO — — —
N J - - -

—~ N~~~
NON | DNNN NN N
NN N N
HNENENENFE N
—_— — —
N N N N
OO OO HEOR
NN N L N
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Opposed Sequences

An Algorithmic Example

sep0 (0. (G G, 6 G G 0
el (7). (%) C5) B @ G ()
sep2 (1), X Q. G G G 0
sep3 (), X GN) () B G 6
sepd XX (G G G O 0
sep5 X X (M) (%) G) ) 6)
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Opposed Sequences

An Algorithmic Example

sep0 (0. (G G, 6 G G 0
el (7). (%) C5) B @ G ()
sep2 (1), X Q. G G G 0
sep3 (), X GN) () B G 6
sepd XX (G G G O 0
step5 X X (GN)0 (N CG) ) 6)
sep6 X X () G O 6 6

— source-sink-sequence!
We apply an algorithm for digraphs (Kleitman, Wang 1973):
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Opposed Sequences

An Algorithmic Example

sep0 (0. (G G, 6 G G 0
el (7). (%) C5) B @ G ()
sep2 (1), X Q. G G G 0
sep3 (), X GN) () B G 6
sepd XX (G G G O 0
step5 X X (GN)0 (N CG) ) 6)
sep6 X X () G O 6 6

— source-sink-sequence!
We apply an algorithm for digraphs (Kleitman, Wang 1973):

sep7 X X X (G @ ()
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Opposed Sequences

An Algorithmic Example

sep0 (0. (G G, 6 G G 0
el (7). (%) C5) B @ G ()
sep2 (1), X Q. G G G 0
sep3 (), X GN) () B G 6
sepd XX (G G G O 0
step5 X X (GN)0 (N CG) ) 6)
sep6 X X () G O 6 6

— source-sink-sequence!

We apply an algorithm for digraphs (Kleitman, Wang 1973):
sep7 X X X (9 Q). ()
step8 X X X X ©). X ()
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Opposed Sequences

An Algorithmic Example

sep0 (0. (G G, 6 G G 0
el (7). (%) C5) B @ G ()
sep2 (1), X Q. G G G 0
sep3 (), X GN) () B G 6
sepd XX (G G G O 0
step5 X X (GN)0 (N CG) ) 6)
sep6 X X () G O 6 6

— source-sink-sequence!

We apply an algorithm for digraphs (Kleitman, Wang 1973):
sep7 X X X (9 Q). ()
step8 X X X X ©). X ()

Note: This algorithm can be implemented to run in time
O(m + n) using a "bucket” technique.
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Our Realization Algorithm

General Realization Algorithm

We order a sequence S containing at least one stream tuple such that:

@ at the beginning all source tuples, say g many, build a decreasing
sequence with respect to their b;,

@ at the end all sink tuples build an increasing sequence with respect
to their aj,
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Our Realization Algorithm

General Realization Algorithm

We order a sequence S containing at least one stream tuple such that:

@ at the beginning all source tuples, say g many, build a decreasing
sequence with respect to their b;,

@ at the end all sink tuples build an increasing sequence with respect
to their aj,

candidate set Vpin: all stream tuples which satisfy
@ a2 < g (indegree does not exceed # available sources) and

@ there does not exist a smaller stream tuple with respect to the opposed
relation <opp.

Theorem (FCT 2011)

S is a dag sequence if and only if Vimin # 0 and there exists an element
(Simin) € Vmin such that S’ :=

B oq
i

n
(blo,l), s ("afmf)fl)’ (baim(,)»nﬂ)’ ey (b(:), (Zzﬂ), o (Z'm,-n:)y (bio. ), (Zmnt), .. ()

‘min imint1

is a dag sequence.
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Our Realization Algorithm

Example: Recursion Tree

Vin ={(). G
G
s ). ). ().
Vinin = 1)}
() Viin ={0): G ()
7= (0.0 0 0 (0 0 (0 () 57= wﬁ
Vinin =16} e Vi =10}
G/ Vi =10). ()} )

= () (D, 6 @) ) 6 @ @) F: [HAGRONERORHRORONG B

wewammw®®%w®xm®@m®®®
Viin = ()} min = (D)} Vi ={()} Vi = ()}
(6] (6]

|5””’ %% () (0% 0 @) 6)

5= e, 00,00, (00, 3. )

not realizable

5= %% (2 (9 (0 6 ) () ||5””’ %% (0,0 (0% 0 @) 6) |

not realizable I

2,5, %, (9), %, (2

not realizable
% (0): (6)
2,5, %% (0, %, % ()

realizable
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Our Realization Algorithm

Lex Max Strategy

Observations:
@ bottleneck is the cardinality of Vs

@ for opposed sequences we have a smallest tuple resulting in
|Vmin’ =1

“lex max strategy”:
choose always the lexicographical largest tuple in Vs

Early conjecture:
Lex max strategy works
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Our Realization Algorithm

Story of the Lex Max Strategy

And Why We Became Curious

Note: when we started our work, the complexity status of dag
realization was still open

Initial experiments:

@ we generated two million dag sequences randomly (for various
sequence sizes)

@ observed success in each case for the lex max strategy
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Our Realization Algorithm

Story of the Lex Max Strategy

And Why We Became Curious

Note: when we started our work, the complexity status of dag
realization was still open

Initial experiments:

@ we generated two million dag sequences randomly (for various
sequence sizes)

@ observed success in each case for the lex max strategy

But: When we tried to prove “correctness’ of the strategy, we
finally managed to construct counter-example(s)

Lesson:
randomly generated instances turn out to be easy instances
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Experiments

Three Types of Test Instances

@ generation of “random sequences”

e sample uniformly dags with n vertices and m arcs
e take the corresponding dag sequence

Note: We sample uniformly dags, but not sequences.
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Experiments

Three Types of Test Instances

@ generation of “random sequences”

e sample uniformly dags with n vertices and m arcs
e take the corresponding dag sequence

Note: We sample uniformly dags, but not sequences.

@ systematic generation of dag sequences

e generate all non-isomorphic dag sequences with 7,8, 9 tuples
o Note: this is infeasible for n > 10!
o Ignore all “trivial sequences” (with <1 stream tuples)
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Experiments

Three Types of Test Instances

@ generation of “random sequences”

e sample uniformly dags with n vertices and m arcs
e take the corresponding dag sequence

Note: We sample uniformly dags, but not sequences.

@ systematic generation of dag sequences

e generate all non-isomorphic dag sequences with 7,8, 9 tuples
o Note: this is infeasible for n > 10!

o Ignore all “trivial sequences” (with <1 stream tuples)

© degree sequences derived from real-world dags
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Experiments

Experiments |

First questions:
© How relevant are opposed sequences?

@ How large is the fraction of dag sequences which are realizable
by using the lex max strategy?

© How difficult are degree sequences derived from real-world
dags?
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Experiments

Acyclic Real World Networks

We considered:
© OBDDs (ordered binary decision
diagrams)

@ public train transport schedule
(20000 tuples)

@ flight schedules (37800 tuples)

Q several food webs (40 to 150
tuples)

Our observations: All instances are realizable by the lex max
strategy.
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Experiments

Opposed Sequences

Which fraction of sequences are opposed sequences?

Fraction of opposed sequences
n=9

Observations

© sequences with a middle «
density have the smallest
fraction of opposed

fraction of opposed sequences

sequences Y
@ opposed sequences are a
relevant class of sequences .

number m of arcs
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Experiments

Opposed Sequences

Which fraction of sequences are opposed sequences?

Fraction of opposed sequences
n=9

Observations

© sequences with a middle «
density have the smallest
fraction of opposed

fraction of opposed sequences

sequences Y
@ opposed sequences are a
relevant class of sequences .

number m of arcs

Note: OBDDs (ordered binary decision diagrams) are dags with
opposed dag sequences.
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Experiments

Lex Max Strategy

How often does the lex max strategy fail?
Observation Poraiag of i soquercos -9

©Q lex max strategy leads to a
dag realization for at least
97% of all dag sequences
with 9 tuples

Percentage p(m) of failure sequences

@ a strong connection between
the density of a sequence 0
and the realizability

0 5 10 15 20 25 30 35 40
number m of arcs
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Experiments

Lex Max Strategy

How often does the lex max strategy fail?
Observation Poraiag of i soquercos -9

©Q lex max strategy leads to a
dag realization for at least
97% of all dag sequences
with 9 tuples

Percentage p(m) of failure sequences

@ a strong connection between
the density of a sequence 0
and the realizability

0 5 10 15 20 25 30 35 40
number m of arcs

But: This result does not explain our observation at the beginning
— “success for 2 million randomly chosen dag sequences” with
> 20 tuples.
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Experiments

Distance to Opposed

@ opposed sequences are efficiently solvable

e would like to have a measure:
how similar is a sequence to being an opposed sequence?

@ distance to opposed = # pairwise incomparable stream tuples
with respect to some specific order

d(S) == ai aj | aj aj\ incomparable stream tuples
’ bi ]’ b; bi ]’ b; w.r.t. <epp and i < j ’
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Experiments

Distance to Opposed

Question: Do randomly generated sequences possess a
preference to a “small” distance to opposed in comparison
with systematically generated sequences?

100 7

percentage of systematically generated sequences
percentage of randomly generated sequences

02468]()|214]6“\‘
difference d to opposed difference d to opposed

0 2 4 6 8 10 12 14

Systematic vs. randomized generation of sequences

YES, there is a clear bias towards smaller distance to opposed for

random instances.
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Experiments

Distance to Opposed

Question: Do non-lexmax sequences possess a preference for
large opposed distances?

0.7
0.6
05
04

0.3
0.2

0.1

0 =
0123456738 9101112131415

fraction of non-lexmax sequences

difference d to opposed
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Experiments

Back to Theory

Observation: very sparse instances (m < n) “forest dags” are
always solvable by lex max strategy

Is there a theoretical explanation?
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Experiments

Back to Theory

Observation: very sparse instances (m < n) “forest dags” are
always solvable by lex max strategy

Is there a theoretical explanation?

Yes, and even more: every choice of a tuple in V,,,;, provably works!

Theorem (Realization of forest dags in linear time)

Let S := (Zi), e (Z:) with 37, ai < n— 1 be a canonically sorted sequence
containing k > 0 source tuples. Furthermore, we assume that S is not a
source-sink-sequence. Consider an arbitrary stream tuple (') with a; < k.

S is a dag sequence if and only if

= o)l ) G oo G G ) G )
by -1/ by —1 ' ba;+1 T\ bi_1/) " \bi) \bi11/) 7 \b,

is a dag sequence.

i
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Randomized Strategies

Randomized Strategy | (Rand I)

Rand I:
@ choose a random permutation of the (stream) tuples

@ apply the linear-time realization algorithm
for prescribed topological orders

Note:
@ considers all permutations of stream tuples

@ has a high probability to fail

(©2012 Berger and Miiller-Hannemann MLU Halle-Wittenberg Dag Realization 26



Randomized Strategies

Rand Il: Exploit Necessary Conditions

Let S be a dag sequence with n tuples.

g — number of source tuples in S
s — number of sink tuples in S

Lemma (necessary criterion for the realizability of dag sequences)

If a stream tuple (Z) occurs at position i in a topological order of a
dag realization, then it follows that

a<min{n—s,i—1}

and

b < min{n—gq,n—i}.

Our task: Find a topological order which fulfills these conditions
for all stream tuples simultaneously.

(©2012 Berger and Miiller-Hannemann MLU Halle-Wittenberg Dag Realization 27



Randomized Strategies

Rand Il: Exploit Necessary Conditions

Reformulation as a perfect matching problem in a bipartite
graph (the so-called bounding graph)

Example: sequence S := (3), (7). (5). (3); (3)7 (1), (0): (@) )

@
bounds for po- (
[
(

sitions 3 to 6 of S

(
|
|

N N N S N S

)
) i

(©2012 Berger and Miiller-Hannemann MLU Halle-Wittenberg Dag Realization
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Randomized Strategies

Randomized Strategy Il (Rand II)

Rand II:
@ choose a random perfect matching in the bounding graph
@ let P be the corresponding permutation of tuples

© apply a linear-time realization algorithm
(subject to the fixed permutation P)

Note: a random perfect matching can be determined in
polynomial time, O(n®(nlogn + log %) log %) € denotes deviation
from uniform distribution

(Jerrum, Sinclair and Vigoda, 2004)

in our experiments:
we compute the average running time over all perfect matchings
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Randomized Strategies

Randomized Strategies Il and IV

Rand IlI:

@ recall our recursive approach:
if the sequence is realizable, then the set V,,;, contains at
least one element by which we can reduce the sequence

@ our general realization algorithm branches over all elements of
Vmin
@ instead of branching, we sample the next stream tuple
uniformly at random from the set Vi,
Rand IV:
@ combine Rand IIl with reduction rules

o for details see full paper
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Randomized Strategies

Success Probability of the

Randomized Strategies

All non-trivial sequences on 9 tuples:

1

0.9
£ 038
o
2 0.7 =Rand |
5 0.6 <+ Rand Il
3 o5 ~*Rand IIl
g 0.4 -+ Rand IV
2 03 »-fraction of lexmax
g sequences
o 0.2
=]
(2]

01 \
0
5 10 15 20 25 30 35 40
number of arcs m
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Randomized Strategies

Success Probability of the

Randomized Strategies

Restriction to non-reducible, non-lexmax sequences of 9 tuples:

0 0
5 10 15 20 25 30 35 40

L 4
S
P 0.6 0.6 2
5 £
°os 05 £
o k)
= <
= o|*Rand Il
lé.. 0.3 0.3 % -+ Rand Ill
= S|+ Rand IV
s 0.2 0.2 8|» % non-reducible
o g non-lexmax
2 0.1 0.1 =| sequences
] o
3 g
(3] <
2 S
[}
o

number of arcs m
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Summary

Summary: Our Contribution

deterministic

polynomially solvable
special classes:

opposed sequences
(a feasible top. order

can be determined
efficiently)

general realization
algorithm

recursive approach,
exponential time

special strategy:
lex—max strategy
(linear—time heuristic)

randomized

four different approaches

topological order
is chosen randomly

@ lex max strategy and RAND IV are remarkably successful

@ all real-world instances solved easily in linear time

(©2012 Berger and Miiller-Hannemann

MLU Halle-Wittenberg

Dag Realization
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Summary

Future Work

To do:

@ characterize the class of instances for which the lex max
strategy works provably correct

o identify other classes of instances which allow polynomial-time
algorithms

@ provide a theoretical analysis of the randomized approaches
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