How to Attack the NP-Complete Dag Realization Problem in Practice

Annabell Berger and Matthias Müller-Hannemann

Institut für Informatik
Martin-Luther-Universität Halle-Wittenberg
http://www.informatik.uni-halle.de

June 7, 2012

The Dag Realization Problem

Problem (dag realization problem)

Given is a finite sequence $S:=\binom{a_1}{b_1},\ldots,\binom{a_n}{b_n}$ with $a_i,b_i\in\mathbb{Z}_0^+$. Does there exist a dag (acyclic digraph without parallel arcs) G=(V,A) with the labeled vertex set $V:=\{v_1,\ldots,v_n\}$ such that we have indegree $d_G^-(v_i)=a_i$ and outdegree $d_G^+(v_i)=b_i$ for all $v_i\in V$?

The Dag Realization Problem

Problem (dag realization problem)

Given is a finite sequence $S := \binom{a_1}{b_1}, \ldots, \binom{a_n}{b_n}$ with $a_i, b_i \in \mathbb{Z}_0^+$. Does there exist a dag (acyclic digraph without parallel arcs) G = (V, A) with the labeled vertex set $V := \{v_1, \ldots, v_n\}$ such that we have indegree $d_G^-(v_i) = a_i$ and outdegree $d_G^+(v_i) = b_i$ for all $v_i \in V$?

In case the answer is "yes" we call

- sequence *S* dag sequence
- dag G a dag realization

The Dag Realization Problem – an Example

• Given is a sequence $\binom{0}{2}, \binom{0}{1}, \binom{1}{3}, \binom{2}{2}, \binom{2}{1}, \binom{2}{0}, \binom{2}{0}$.

Find an acyclic digraph with corresponding vertex degrees.

Terminology

Classification of tuples $\begin{pmatrix} a_i \\ b_i \end{pmatrix}$

- source tuple: $a_i = 0$ and $b_i > 0$
- sink tuple: $a_i > 0$ and $b_i = 0$
- stream tuple: $a_i > 0$ and $b_i > 0$

Assumptions:

- no zero tuples $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$
- $\sum_{i=1}^{n} a_i = \sum_{i=1}^{n} b_i$ (necessary for realization)

Digraph Realization is Easy

Problem (digraph realization problem)

Given is a finite sequence $S := \binom{a_1}{b_1}, \ldots, \binom{a_n}{b_n}$ with $a_i, b_i \in \mathbb{Z}_0^+$. Does there exist a digraph (without parallel arcs) G = (V, A) with the labeled vertex set $V := \{v_1, \ldots, v_n\}$ such that we have indegree $d_G^-(v_i) = a_i$ and outdegree $d_G^+(v_i) = b_i$ for all $v_i \in V$?

Digraph Realization is Easy

Problem (digraph realization problem)

Given is a finite sequence $S := \begin{pmatrix} a_1 \\ b_1 \end{pmatrix}, \dots, \begin{pmatrix} a_n \\ b_n \end{pmatrix}$ with $a_i, b_i \in \mathbb{Z}_0^+$. Does there exist a digraph (without parallel arcs) G = (V, A) with the labeled vertex set $V := \{v_1, \dots, v_n\}$ such that we have indegree $d_G^-(v_i) = a_i$ and outdegree $d_G^+(v_i) = b_i$ for all $v_i \in V$?

Two different approaches with polynomial running time:

1 recursive algorithms (KLEITMAN, WANG 1973) — choose an arbitrary tuple $\binom{a_i}{b_i}$ and reduce from b_i lexicographical largest tuples the a_i by "one"

Digraph Realization is Easy

Problem (digraph realization problem)

Given is a finite sequence $S:=\binom{a_1}{b_1},\ldots,\binom{a_n}{b_n}$ with $a_i,b_i\in\mathbb{Z}_0^+$. Does there exist a digraph (without parallel arcs) G=(V,A) with the labeled vertex set $V:=\{v_1,\ldots,v_n\}$ such that we have indegree $d_G^-(v_i)=a_i$ and outdegree $d_G^+(v_i)=b_i$ for all $v_i\in V$?

Two different approaches with polynomial running time:

- recursive algorithms (KLEITMAN, WANG 1973) choose an arbitrary tuple $\binom{a_i}{b_i}$ and reduce from b_i lexicographical largest tuples the a_j by "one"
- complete characterization of digraph sequences (GALE 1957, RYSER 1957, FULKERSON 1960, CHEN 1966) — check a polynomial number of inequalities (in the size n)

Complexity of Dag Realization

Theorem (Nichterlein 2011)

The dag realization problem is (strongly) NP-complete.

Proof: by reduction from 3-PARTITION

Complexity of Dag Realization

Theorem (Nichterlein 2011)

The dag realization problem is (strongly) NP-complete.

Proof: by reduction from 3-PARTITION

Theorem (Hartung and Nichterlein 2012)

The dag realization problem is fixed parameter tractable with respect to the parameter maximum degree Δ .

Note: This is a mere classification result. The running time of their FPT algorithm is $\Delta^{\Delta^{O(\Delta)}} \cdot n!$

Realization with a Fixed Topological Order

Realization with a prescribed topological order

Input: sequence $S := \binom{a_1}{b_1}, \dots, \binom{a_n}{b_n}$ topological order $v_1 < v_2, < \dots < v_n$

Task: Find a dag realization according to the given top. order

Greedy works (linear-time algorithm):

- connect first non-source vertex v_i with vertex degree $\binom{a_i}{b_i}$ with the a_i largest sources
- reduce $\binom{a_i}{b_i}$ to $\binom{0}{b_i}$, and the source out-degrees by one \rightarrow yields new sequence S'
- we proved:
 if and only if these steps fail, the sequence is not realizable

This shows: Hardness lies in finding a feasible topological order

Overview: Our Contribution

- we made experiments for all these variants
- experiments show: it is hard to find sequences which we cannot solve in polynomial time

Opposed Relation

Definition (opposed relation)

Given are $c_1:=\binom{a_1}{b_1}\in\mathbb{Z}^2$ and $c_2:=\binom{a_2}{b_2}\in\mathbb{Z}^2$. We define: $c_1\leq_{opp}c_2\Leftrightarrow (a_1\leq a_2\wedge b_1\geq b_2)$.

Opposed Relation

Definition (opposed relation)

Given are
$$c_1:=\binom{a_1}{b_1}\in\mathbb{Z}^2$$
 and $c_2:=\binom{a_2}{b_2}\in\mathbb{Z}^2$. We define: $c_1\leq_{opp}c_2\Leftrightarrow(a_1\leq a_2\wedge b_1\geq b_2)$.

Opposed relation defines a partial order

- reflexive, transitive and antisymmetric relation
- ② it is not possible to compare all tuples c_1 and c_2 .

Opposed Relation

Definition (opposed relation)

Given are
$$c_1:=\binom{a_1}{b_1}\in\mathbb{Z}^2$$
 and $c_2:=\binom{a_2}{b_2}\in\mathbb{Z}^2$. We define: $c_1\leq_{opp}c_2\Leftrightarrow (a_1\leq a_2\wedge b_1\geq b_2)$.

Opposed relation defines a partial order

- reflexive, transitive and antisymmetric relation
- ② it is not possible to compare all tuples c_1 and c_2 .

Example: $\binom{2}{3} <_{opp} \binom{3}{1}$ but $\binom{2}{2}$, $\binom{3}{3}$ are not comparable

Opposed Sequences

Definition (opposed sequence)

We denote a sequence as opposed sequence, when it is possible to number all tuples (except for "sinks" and "sources") in a chain such that we have $\binom{a_i}{b_i} \leq_{opp} \binom{a_{i+1}}{b_{i+1}}$.

Opposed Sequences

Definition (opposed sequence)

We denote a sequence as opposed sequence, when it is possible to number all tuples (except for "sinks" and "sources") in a chain such that we have $\binom{a_i}{b_i} \leq_{opp} \binom{a_{i+1}}{b_{i+1}}$.

Example:
$$\underbrace{\begin{pmatrix} 0 \\ 2 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}}_{\text{"sources"}}, \underbrace{\begin{pmatrix} 1 \\ 3 \end{pmatrix}}_{\text{opp}} \underbrace{\begin{pmatrix} 2 \\ 2 \end{pmatrix}}_{\text{opp}} \underbrace{\begin{pmatrix} 2 \\ 1 \end{pmatrix}}_{\text{"sinks"}}, \underbrace{\begin{pmatrix} 2 \\ 0 \end{pmatrix}, \begin{pmatrix} 2 \\ 0 \end{pmatrix}}_{\text{"sinks"}}$$

Note: It is possible to sort all tuples (except for "sinks" and "sources") so that we have $a_i \leq a_{i+1}$ and $b_i \geq b_{i+1}$ for all indices i.

Realization of Opposed Sequences

We order an opposed sequence S containing at least one tuple (non-sink, non-source) such that:

- **1** at the beginning all source tuples build a decreasing sequence with respect to their b_i ,
- ② at the end all sink tuples build an increasing sequence with respect to their a_i ,
- 3 number all remaining tuples (non-sinks and non-sources) in a chain such that we have $\binom{a_i}{b_i} \leq_{opp} \binom{a_{i+1}}{b_{i+1}}$, let $\binom{a_{i_{min}}}{b_{i_{min}}}$ be the first of them

Realization of Opposed Sequences

We order an opposed sequence S containing at least one tuple (non-sink, non-source) such that:

- **1** at the beginning all source tuples build a decreasing sequence with respect to their b_i ,
- ② at the end all sink tuples build an increasing sequence with respect to their a_i ,
- **3** number all remaining tuples (non-sinks and non-sources) in a chain such that we have $\binom{a_i}{b_i} \leq_{opp} \binom{a_{i+1}}{b_{i+1}}$, let $\binom{a_{i_{min}}}{b_{i_{min}}}$ be the first of them

Theorem (opposed sequences, FCT 2011)

An opposed sequence S is a dag sequence if and only if there exist at least $a_{i_{min}}$ source tuples in S and if $S' := \binom{0}{b_1-1}, \ldots, \binom{0}{b_{a_{i_1}}-1}, \binom{0}{b_{a_{i_1}}+1}, \ldots, \binom{0}{b_{i_{min}}-1}, \binom{0}{b_{i_{min}}-1}, \binom{a_{i_{min}}+1}{b_{i_{min}}+1}, \ldots, \binom{a_n}{b_n}$

is a dag sequence.

step 0 $\binom{0}{2}$, $\binom{0}{1}$, $\binom{2}{3}$, $\binom{2}{2}$, $\binom{2}{1}$,

 $\binom{1}{0}$,

step 0
$$\binom{0}{2}$$
, $\binom{0}{1}$, $\binom{2}{3}$, $\binom{2}{2}$, $\binom{2}{1}$, $\binom{1}{0}$, $\binom{2}{0}$
step 1 $\binom{0}{2-1}$, $\binom{0}{1-1}$, $\binom{2-2}{3}$, $\binom{2}{2}$, $\binom{2}{1}$, $\binom{1}{0}$, $\binom{2}{0}$


```
step 0 \binom{0}{2}, \binom{0}{1}, \binom{2}{3}, \binom{2}{2}, \binom{2}{1}, \binom{1}{0}, \binom{2}{0}

step 1 \binom{0}{2-1}, \binom{0}{1-1}, \binom{2-2}{3}, \binom{2}{2}, \binom{2}{1}, \binom{1}{0}, \binom{2}{0}

step 2 \binom{0}{1}, X \binom{0}{3}, \binom{2}{2}, \binom{2}{1}, \binom{1}{0}, \binom{2}{0}
```


step 0	$\binom{0}{2}$,	$\binom{0}{1}$,	$\binom{2}{3}$,	$\binom{2}{2}$,	$\binom{2}{1}$,	$\binom{1}{0}$,	$\binom{2}{0}$
step 1	$\binom{0}{2-1}$,	$\binom{0}{1-1}$,	$\binom{2-2}{3}$,	$\binom{2}{2}$,	$\binom{2}{1}$,	$\binom{1}{0}$,	$\binom{2}{0}$
step 2	$\begin{pmatrix} 0 \\ 1 \end{pmatrix}$,	X	$\binom{0}{3}$,	$\binom{2}{2}$,	$\binom{2}{1}$,	$\begin{pmatrix} 1 \\ 0 \end{pmatrix}$,	$\binom{2}{0}$
step 3	$\begin{pmatrix} 0 \\ 1-1 \end{pmatrix}$,	Χ	$\begin{pmatrix} 0 \\ 3-1 \end{pmatrix}$,	$\binom{2-2}{2}$,	$\binom{2}{1}$,	$\binom{1}{0}$,	$\binom{2}{0}$
step 4	Χ	Χ	$\binom{0}{2}$,	$\binom{0}{2}$,	$\binom{2}{1}$,	$\binom{1}{0}$,	$\binom{2}{0}$
step 5	X	X	$\binom{0}{2-1}$,	$\binom{0}{2-1}$,	$\binom{2-2}{1}$,	$\begin{pmatrix} 1 \\ 0 \end{pmatrix}$,	$\binom{2}{0}$

– source-sink-sequence!

We apply an algorithm for digraphs (Kleitman, Wang 1973):

step 0
$$\binom{0}{2}$$
, $\binom{0}{1}$, $\binom{2}{3}$, $\binom{2}{2}$, $\binom{2}{1}$, $\binom{1}{0}$, $\binom{2}{0}$ step 1 $\binom{0}{2-1}$, $\binom{0}{1-1}$, $\binom{2-2}{3}$, $\binom{2}{2}$, $\binom{2}{1}$, $\binom{1}{0}$, $\binom{2}{0}$ step 2 $\binom{0}{1}$, X $\binom{0}{3}$, $\binom{2}{2}$, $\binom{2}{1}$, $\binom{1}{0}$, $\binom{1}{0}$, $\binom{2}{0}$ step 3 $\binom{0}{1-1}$, X $\binom{0}{3-1}$, $\binom{2-2}{2}$, $\binom{2}{1}$, $\binom{1}{0}$, $\binom{0}{1}$, step 4 X X $\binom{0}{2}$, $\binom{0}{2}$, $\binom{0}{2}$, $\binom{2}{2}$, $\binom{1}{1}$, $\binom{1}{0}$, $\binom{2}{0}$ step 5 X X $\binom{0}{2-1}$, $\binom{0}{1}$, $\binom{0}{1}$, $\binom{2-2}{1}$, $\binom{1}{0}$, $\binom{0}{1}$

We apply an algorithm for digraphs (Kleitman, Wang 1973):

$$\binom{0}{1}$$
,

$$\binom{0}{1}$$
,

$$\begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
,

$$\binom{0}{1}$$

– source-sink-sequence!

We apply an algorithm for digraphs (Kleitman, Wang 1973):

step 7 X X X
$$\binom{0}{1}$$
, $\binom{0}{1}$, $\binom{1}{0}$, $\binom{1}{0}$, step 8 X X X X $\binom{0}{1}$, X $\binom{1}{0}$

$$\begin{array}{c} \text{step 0} & \binom{0}{2}, & \binom{0}{1}, & \binom{2}{3}, & \binom{2}{2}, & \binom{2}{1}, & \binom{1}{0}, & \binom{2}{0} \\ \text{step 1} & \binom{0}{2-1}, & \binom{0}{1-1}, & \binom{2-2}{3}, & \binom{2}{2}, & \binom{2}{1}, & \binom{1}{0}, & \binom{2}{0} \\ \text{step 2} & \binom{0}{1}, & X & \binom{0}{3}, & \binom{2}{2}, & \binom{2}{1}, & \binom{1}{0}, & \binom{2}{0} \\ \text{step 3} & \binom{0}{1-1}, & X & \binom{0}{3-1}, & \binom{2-2}{2}, & \binom{2}{1}, & \binom{1}{0}, & \binom{2}{0} \\ \text{step 4} & X & X & \binom{0}{2}, & \binom{0}{2}, & \binom{2}{1}, & \binom{1}{0}, & \binom{2}{0} \\ \text{step 5} & X & X & \binom{0}{2-1}, & \binom{0}{2-1}, & \binom{2-2}{1}, & \binom{1}{0}, & \binom{2}{0} \\ \text{step 6} & X & X & \binom{0}{1}, & \binom{0}{1}, & \binom{0}{1}, & \binom{1}{0}, & \binom{2}{0} \\ \end{array}$$

$$- \text{source-sink-sequence!}$$

We apply an algorithm for digraphs (Kleitman, Wang 1973):

step 7 X X X
$$\binom{0}{1}$$
, $\binom{0}{1}$, $\binom{1}{0}$, $\binom{1}{0}$, step 8 X X X X $\binom{0}{1}$, X $\binom{1}{0}$

Note: This algorithm can be implemented to run in time O(m+n) using a "bucket" technique.

General Realization Algorithm

We order a sequence S containing at least one stream tuple such that:

- ① at the beginning all source tuples, say q many, build a decreasing sequence with respect to their b_i ,
- at the end all sink tuples build an increasing sequence with respect to their a_i,

General Realization Algorithm

We order a sequence S containing at least one stream tuple such that:

- ① at the beginning all source tuples, say q many, build a decreasing sequence with respect to their b_i ,
- ② at the end all sink tuples build an increasing sequence with respect to their a_i ,

candidate set V_{min} : all stream tuples which satisfy

- **1** $a_i \le q$ (indegree does not exceed # available sources) and
- 2 there does not exist a smaller stream tuple with respect to the opposed relation $<_{opp}$.

Theorem (FCT 2011)

S is a dag sequence if and only if $V_{min} \neq \emptyset$ and there exists an element $\binom{a_{imin}}{b_{imin}} \in V_{min}$ such that S':=

$$\binom{\binom{0}{0}}{b_1-1}, \ldots, \binom{0}{b_{a_{i_{min}}}-1}, \binom{0}{b_{a_{i_{min}}+1}}, \ldots, \binom{0}{b_q}, \binom{a_{q+1}}{b_{q+1}}, \ldots, \binom{a_{i_{min}-1}}{b_{i_{min}-1}}, \binom{0}{b_{i_{min}}}, \binom{a_{i_{min}+1}}{b_{i_{min}+1}}, \ldots, \binom{a_n}{b_n}$$

is a dag sequence.

Example: Recursion Tree

Lex Max Strategy

Observations:

- lacktriangledown bottleneck is the cardinality of V_{min}
- ② for opposed sequences we have a smallest tuple resulting in $|V_{\it min}|=1$

"lex max strategy":

choose always the lexicographical largest tuple in V_{min}

Early conjecture:

Lex max strategy works

Story of the Lex Max Strategy And Why We Became Curious

Note: when we started our work, the complexity status of dag realization was still open

Initial experiments:

- we generated two million dag sequences randomly (for various sequence sizes)
- Observed success in each case for the lex max strategy

16

Story of the Lex Max Strategy And Why We Became Curious

Note: when we started our work, the complexity status of dag realization was still open

Initial experiments:

- we generated two million dag sequences randomly (for various sequence sizes)
- Observed success in each case for the lex max strategy

But: When we tried to prove "correctness" of the strategy, we finally managed to construct counter-example(s)

Lesson:

randomly generated instances turn out to be easy instances

16

Three Types of Test Instances

- generation of "random sequences"
 - sample uniformly dags with *n* vertices and *m* arcs
 - take the corresponding dag sequence

Note: We sample uniformly dags, but not sequences.

Three Types of Test Instances

- generation of "random sequences"
 - sample uniformly dags with *n* vertices and *m* arcs
 - take the corresponding dag sequence

Note: We sample uniformly dags, but not sequences.

- Systematic generation of dag sequences
 - ullet generate all non-isomorphic dag sequences with 7,8,9 tuples
 - Note: this is infeasible for $n \ge 10!$
 - ullet Ignore all "trivial sequences" (with ≤ 1 stream tuples)

Three Types of Test Instances

- generation of "random sequences"
 - sample uniformly dags with *n* vertices and *m* arcs
 - take the corresponding dag sequence

Note: We sample uniformly dags, but not sequences.

- Systematic generation of dag sequences
 - ullet generate all non-isomorphic dag sequences with 7,8,9 tuples
 - Note: this is infeasible for $n \ge 10!$
 - ullet Ignore all "trivial sequences" (with ≤ 1 stream tuples)
- degree sequences derived from real-world dags

Experiments I

First questions:

- How relevant are opposed sequences?
- How large is the fraction of dag sequences which are realizable by using the lex max strategy?
- How difficult are degree sequences derived from real-world dags?

18

Acyclic Real World Networks

We considered:

- OBDDs (ordered binary decision) diagrams)
- public train transport schedule (20000 tuples)
- flight schedules (37800 tuples)
- several food webs (40 to 150) tuples)

Our observations: All instances are realizable by the lex max strategy.

Opposed Sequences

Which fraction of sequences are opposed sequences?

Observations

- sequences with a middle density have the smallest fraction of opposed sequences
- opposed sequences are a relevant class of sequences

Opposed Sequences

Which fraction of sequences are opposed sequences?

Observations

- sequences with a middle density have the smallest fraction of opposed sequences
- opposed sequences are a relevant class of sequences

Note: OBDDs (ordered binary decision diagrams) are dags with opposed dag sequences.

Lex Max Strategy

How often does the lex max strategy fail?

Observation

- lex max strategy leads to a dag realization for at least 97% of all dag sequences with 9 tuples
- a strong connection between the density of a sequence and the realizability

Lex Max Strategy

How often does the lex max strategy fail?

Observation

- lex max strategy leads to a dag realization for at least 97% of all dag sequences with 9 tuples
- a strong connection between the density of a sequence and the realizability

But: This result does not explain our observation at the beginning"success for 2 million randomly chosen dag sequences" with

 \geq 20 tuples.

Distance to Opposed

- opposed sequences are efficiently solvable
- would like to have a measure: how similar is a sequence to being an opposed sequence?
- distance to opposed = # pairwise incomparable stream tuples with respect to some specific order

$$d(S) := \left| \left\{ \left(\begin{pmatrix} a_i \\ b_i \end{pmatrix}, \begin{pmatrix} a_j \\ b_j \end{pmatrix} \right) \mid \begin{pmatrix} a_i \\ b_i \end{pmatrix}, \begin{pmatrix} a_j \\ b_j \end{pmatrix} \quad \text{incomparable stream tuples} \\ \text{w.r.t.} \leq_{\textit{opp}} \text{ and } i < j \end{cases} \right\} \right|.$$

Distance to Opposed

Question: Do randomly generated sequences possess a preference to a "small" distance to opposed in comparison with systematically generated sequences?

Systematic vs. randomized generation of sequences

YES, there is a clear bias towards smaller distance to opposed for random instances.

Distance to Opposed

Question: Do non-lexmax sequences possess a preference for large opposed distances?

©2012 Berger and Müller-Hannemann

Back to Theory

Observation: very sparse instances (m < n) "forest dags" are always solvable by lex max strategy

Is there a theoretical explanation?

Dag Realization

Back to Theory

Observation: very sparse instances (m < n) "forest dags" are always solvable by lex max strategy

Is there a theoretical explanation?

Yes, and even more: every choice of a tuple in V_{min} provably works!

Theorem (Realization of forest dags in linear time)

Let $S := \binom{a_1}{b_1}, \ldots, \binom{a_n}{b_n}$ with $\sum_{i=1}^n a_i \le n-1$ be a canonically sorted sequence containing $\hat{k} > 0$ source tuples. Furthermore, we assume that S is not a source-sink-sequence. Consider an arbitrary stream tuple $\binom{a_i}{b_i}$ with $a_i \leq k$. S is a dag sequence if and only if

$$S':=\begin{pmatrix}0\\b_1-1\end{pmatrix},\ldots,\begin{pmatrix}0\\b_{a_j}-1\end{pmatrix},\begin{pmatrix}0\\b_{a_{j+1}}\end{pmatrix},\ldots,\begin{pmatrix}0\\b_k\end{pmatrix},\ldots,\begin{pmatrix}a_{i-1}\\b_{i-1}\end{pmatrix},\begin{pmatrix}0\\b_j\end{pmatrix},\begin{pmatrix}a_{i+1}\\b_{i+1}\end{pmatrix},\ldots,\begin{pmatrix}a_n\\b_n\end{pmatrix}$$

is a dag sequence.

Randomized Strategy I (Rand I)

Rand I:

- choose a random permutation of the (stream) tuples
- apply the linear-time realization algorithm for prescribed topological orders

Note:

- considers all permutations of stream tuples
- has a high probability to fail

26

Rand II: Exploit Necessary Conditions

Let S be a dag sequence with n tuples.

- q number of source tuples in S
- s number of sink tuples in S

Lemma (necessary criterion for the realizability of dag sequences)

If a stream tuple $\binom{a}{b}$ occurs at position i in a topological order of a dag realization, then it follows that

$$a \le \min\{n-s, i-1\}$$

and

$$b \leq \min\{n-q, n-i\}.$$

Our task: Find a topological order which fulfills these conditions for all stream tuples simultaneously.

Rand II: Exploit Necessary Conditions

Reformulation as a perfect matching problem in a bipartite graph (the so-called bounding graph)

Example: sequence
$$S:=\binom{0}{3},\binom{0}{1},\binom{1}{2},\binom{2}{3},\binom{4}{3},\binom{4}{4},\binom{1}{1},\binom{1}{0},\binom{2}{0},\binom{3}{0}$$

28

Randomized Strategy II (Rand II)

Rand II:

- choose a random perfect matching in the bounding graph
- ② let P be the corresponding permutation of tuples
- apply a linear-time realization algorithm (subject to the fixed permutation P)

Note: a random perfect matching can be determined in polynomial time, $O(n^8(n \log n + \log \frac{1}{\varepsilon}) \log \frac{1}{\varepsilon})$, ε denotes deviation from uniform distribution (Jerrum, Sinclair and Vigoda, 2004)

in our experiments:

we compute the average running time over all perfect matchings

Randomized Strategies III and IV

Rand III:

- recall our recursive approach: if the sequence is realizable, then the set V_{min} contains at least one element by which we can reduce the sequence
- ullet our general realization algorithm branches over all elements of V_{min}
- ullet instead of branching, we sample the next stream tuple uniformly at random from the set V_{min}

Rand IV:

- combine Rand III with reduction rules
- for details see full paper

Success Probability of the Randomized Strategies

All non-trivial sequences on 9 tuples:

Success Probability of the Randomized Strategies

Restriction to non-reducible, non-lexmax sequences of 9 tuples:

Summary: Our Contribution

- lex max strategy and RAND IV are remarkably successful
- all real-world instances solved easily in linear time

Future Work

To do:

- characterize the class of instances for which the lex max strategy works provably correct
- identify other classes of instances which allow polynomial-time algorithms
- provide a theoretical analysis of the randomized approaches

